Grades K-4 Science Core Ideas and Topics

Reference the Arkansas K-12 Science Standards Learning Progressions and Standards Overviews at www.arkansased.gov for more detailed learning progressions by topic and Disciplinary Core Idea (DCI) as well as in depth descriptions of the science and engineering practices, crosscutting concepts, and core ideas in each grade level.

<table>
<thead>
<tr>
<th>Grade</th>
<th>PHYSICAL SCIENCES</th>
<th>LIFE SCIENCES</th>
<th>EARTH and SPACE SCIENCES</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kindergarten</td>
<td>K. Forces and Interactions: Pushes and Pulls</td>
<td>K. Interdependent Relationships in Ecosystems: Animals, Plants, and Their Environment</td>
<td>K. Weather and Climate</td>
</tr>
<tr>
<td>Grade 1</td>
<td>PHYSICAL SCIENCES</td>
<td>LIFE SCIENCES</td>
<td>EARTH and SPACE SCIENCES</td>
</tr>
<tr>
<td>Grade 2</td>
<td>PHYSICAL SCIENCES</td>
<td>LIFE SCIENCES</td>
<td>EARTH and SPACE SCIENCES</td>
</tr>
<tr>
<td></td>
<td>ENGINEERING, TECHNOLOGY, and APPLICATIONS of SCIENCE</td>
<td></td>
<td></td>
</tr>
<tr>
<td>K-2. Engineering Design</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Grade 3</td>
<td>PHYSICAL SCIENCES</td>
<td>LIFE SCIENCES</td>
<td>EARTH and SPACE SCIENCES</td>
</tr>
<tr>
<td></td>
<td>3. Forces and Interactions</td>
<td>3. Interdependent Relationships in Ecosystems</td>
<td>3. Inheritance and Variation of Traits</td>
</tr>
<tr>
<td>Grade 4</td>
<td>PHYSICAL SCIENCES</td>
<td>LIFE SCIENCES</td>
<td>EARTH and SPACE SCIENCES</td>
</tr>
<tr>
<td></td>
<td>4. Earth’s Systems: Processes that Shape the Earth</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>ENGINEERING, TECHNOLOGY, and APPLICATIONS of SCIENCE</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3-4. Engineering Design</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
The Arkansas K-12 Science Standards for Grades K-4 is a curriculum framework of grade level student performance expectations based on the core ideas of the physical sciences (PS), life sciences (LS), earth and space sciences (ESS), and engineering (ETS) from A Framework for K-12 Science Education (NRC 2012). The performance expectations build logically from Grades K-4 to Grades 5-8. The performance expectations clarify what students need to know and be able to do at the end of each grade. Student performance expectations consist of three dimensions: science and engineering practices, disciplinary core ideas, and crosscutting concepts. Engineering performance expectations are meant to be integrated into science instruction to support the learning of science phenomena at all levels from Kindergarten to Grade 12.

As part of teaching the Arkansas K-12 Science Standards, it will be important to instruct and guide students in adopting appropriate safety precautions for their student-directed science investigations. Reducing risk and preventing accidents in science classrooms begin with planning. There are four recommended steps in carrying out a hazard and risk assessment for any planned lab investigation.

1) Identify all hazards. Hazards may be physical, chemical, health, or environmental.
2) Evaluate the type of risk associated with each hazard.
3) Write the procedure and all necessary safety precautions in such a way as to eliminate or reduce the risk associated with each hazard.
4) Prepare for any emergency that might arise in spite of all of the required safety precautions.

According to Arkansas Code Annotated § 6-10-113 (2012) for eye protection, every student and teacher in public schools participating in any chemical or combined chemical-physical laboratories involving caustic or explosive chemicals or hot liquids or solids is required to wear industrial-quality eye protective devices (eye goggles) at all times while participating in science investigations.

Notes:
1. Student Performance Expectations (PEs) may be taught in any sequence or grouping within a grade level.
2. An asterisk (*) indicates an engineering connection to a practice, core idea, or crosscutting concept.
3. The Clarification Statements are examples and additional guidance for the instructor. AR indicates Arkansas-specific Clarification Statements.
4. The Assessment Boundaries delineate content that may be taught but not assessed in large-scale assessments. AR indicates Arkansas-specific Assessment Boundaries.
5. The examples given (e.g.,) are suggestions for the instructor.
6. Throughout this document, connections are provided to the nature of science as defined by A Framework for K-12 Science Education (NRC 2012).
7. Throughout this document, connections are provided to Engineering, Technology, and Applications of Science as defined by A Framework for K-12 Science Education (NRC 2012).
8. Each set of PEs lists connections to other disciplinary core ideas (DCIs) within the Arkansas K-12 Science Standards and to the Common Core State Standards (CCSS) in English Language Arts (ELA)/Literacy and Mathematics.
Table of Contents

Kindergarten
- Forces and Interactions: Pushes and Pulls ... 5
- Weather and Climate ... 7
- Interdependent Relationships in Ecosystems: Animals, Plants, and Their Environment ... 9
- Engineering, Technology, and Applications of Science ... 11

Grade One
- Waves: Light and Sound ... 13
- Structure, Function, and Information Processing ... 15
- Space Systems: Patterns and Cycles .. 17
- Engineering, Technology, and Applications of Science ... 18

Grade Two
- Structure and Properties of Matter ... 20
- Interdependent Relationships in Ecosystems .. 22
- Earth’s Systems: Processes that Shape the Earth .. 24
- Engineering, Technology, and Applications of Science ... 26

Grade Three
- Forces and Interactions ... 28
- Interdependent Relationships in Ecosystems .. 30
- Inheritance and Variation of Traits: Life Cycles and Traits 32
- Weather and Climate .. 34
- Engineering, Technology, and Applications of Science ... 36

Grade Four
- Structure, Function, and Information Processing .. 38
- Waves: Waves and Information .. 39
- Energy ... 41
- Earth’s Systems: Processes that Shape the Earth .. 43
- Engineering, Technology, and Applications of Science ... 45

Contributors
.. 47
Forces and Interactions: Pushes and Pulls

Students who demonstrate understanding can:

K-PS2-1 Plan and conduct an investigation to compare the effects of different strengths or different directions of pushes and pulls on the motion of an object. [Clarification Statement: Examples of pushes or pulls could include a string attached to an object being pulled, a person pushing an object, a person stopping a rolling ball, and two objects colliding and pushing on each other.] [Assessment Boundary: Assessment is limited to different relative strengths or different directions, but not both at the same time. Assessment does not include non-contact pushes or pulls such as those produced by magnets.]

K-PS2-2 Analyze data to determine if a design solution works as intended to change the speed or direction of an object with a push or a pull.* [Clarification Statement: Examples of problems requiring a solution could include having a marble or other object move a certain distance, follow a particular path, and knock down other objects. Examples of solutions could include tools such as a ramp to increase the speed of the object and a structure that would cause an object such as a marble or ball to turn.] [Assessment Boundary: Assessment does not include friction as a mechanism for change in speed.]

The performance expectations above were developed using the following elements from the NRC document *A Framework for K-12 Science Education*:

<table>
<thead>
<tr>
<th>Science and Engineering Practices</th>
<th>Disciplinary Core Ideas</th>
<th>Crosscutting Concepts</th>
</tr>
</thead>
<tbody>
<tr>
<td>Planning and Carrying Out</td>
<td>PS2.A: Forces and Motion</td>
<td></td>
</tr>
<tr>
<td>Investigations</td>
<td>Pushes and pulls can have different strengths and directions. (K-PS2-1, K-PS2-2)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Pushing or pulling on an object can change the speed or direction of its motion and can start or stop it. (K-PS2-1, K-PS2-2)</td>
<td></td>
</tr>
<tr>
<td>Analyzing and Interpreting</td>
<td>PS2.B: Types of Interactions</td>
<td></td>
</tr>
<tr>
<td>Data</td>
<td>When objects touch or collide, they push on one another and can change motion. (K-PS2-1)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>PS3.C: Relationship Between Energy and Forces</td>
<td></td>
</tr>
<tr>
<td></td>
<td>A bigger push or pull makes things speed up or slow down more quickly. (K-PS2-1)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>ETS1.A: Defining Engineering Problems</td>
<td></td>
</tr>
<tr>
<td></td>
<td>A situation that people want to change or create can be approached as a problem to be solved through engineering. Such problems may have many acceptable solutions. (K-PS2-2)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Cause and Effect</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Simple tests can be designed to gather evidence to support or refute student ideas about causes. (K-PS2-1, K-PS2-2)</td>
<td></td>
</tr>
</tbody>
</table>

Connections to Nature of Science

- Scientists use different ways to study the world. (K-PS2-1)

Connections to other DCIs in Kindergarten:

- **K-2.ETS1.A** (K-PS2-2); **K-2.ETS1.B** (K-PS2-2)

Connections to other DCIs across grade levels:

- **K-2.ETS1.B** (K-PS2-2); **3.PS2.A** (K-PS2-1, K-PS2-2); **3.PS2.B** (K-PS2-1); **4.PS3.A** (K-PS2-1); **3-5.ETS1.A** (K-PS2-2)
Common Core State Standards Connections:

ELA/Literacy –

RI.K.1 With prompting and support, ask and answer questions about key details in a text. (K-PS2-2)

W.K.7 Participate in shared research and writing projects (e.g., explore a number of books by a favorite author and express opinions about them). (K-PS2-1)

SL.K.3 Ask and answer questions in order to seek help, get information, or clarify something that is not understood. (K-PS2-2)

Mathematics –

MP.2 Reason abstractly and quantitatively. (K-PS2-1)

K.MD.A.1 Describe measurable attributes of objects, such as length or weight. Describe several measurable attributes of a single object. (K-PS2-1)

K.MD.A.2 Directly compare two objects with a measurable attribute in common, to see which object has “more of” / “less of” the attribute, and describe the difference. (K-PS2-1)
KINDERGARTEN

Weather and Climate

Students who demonstrate understanding can:

K-PS3-1 Make observations to determine the effect of sunlight on Earth’s surface. [Clarification Statement: Examples of Earth’s surface could include sand, soil, rocks, and water.] [Assessment Boundary: Assessment of temperature is limited to relative measures such as warmer/cooler.]

K-PS3-2 Use tools and materials to design and build a structure that will reduce the warming effect of sunlight on an area.* [Clarification Statement: Examples of structures could include umbrellas, canopies, and tents that minimize the warming effect of the sun.]

K-ESS2-1 Use and share observations of local weather conditions to describe patterns over time. [Clarification Statement: Examples of qualitative observations could include descriptions of the weather (such as sunny, cloudy, rainy, or warm); examples of quantitative observations could include numbers of sunny, windy, and rainy days in a month. Examples of patterns could include that it is usually cooler in the morning than in the afternoon or the number of sunny days versus cloudy days in different months.] [Assessment Boundary: Assessment of quantitative observations is limited to whole numbers and relative measures such as warmer/cooler.]

K-ESS3-2 Ask questions to obtain information about the purpose of weather forecasting to prepare for, and respond to, severe weather.* [Clarification Statement: Emphasis is on local forms of severe weather.]

The performance expectations above were developed using the following elements from the NRC document A Framework for K-12 Science Education:

Science and Engineering Practices

Asking Questions and Defining Problems
Asking questions and defining problems in grades K–2 builds on prior experiences and progresses to simple descriptive questions that can be tested.
• Ask questions based on observations to find more information about the designed world. (K-ESS3-2)

Planning and Carrying Out Investigations
Planning and carrying out investigations to answer questions or test solutions to problems in K–2 builds on prior experiences and progresses to simple investigations, based on fair tests, which provide data to support explanations or design solutions.
• Make observations (firsthand or from media) to collect data that can be used to make comparisons. (K-PS3-1)

Analyzing and Interpreting Data
Analyzing data in K–2 builds on prior experiences and progresses to collecting, recording, and sharing observations.
• Use observations (firsthand or from media) to describe patterns in the natural world in order to answer scientific questions. (K-ESS2-1)

Constructing Explanations and Designing Solutions
Constructing explanations and designing solutions in K–2 builds on prior experiences and progresses to the use of evidence and ideas in constructing evidence-based accounts of natural phenomena and designing solutions.
• Use tools and materials provided to design and build a device that solves a specific problem or a solution to a specific problem. (K-PS3-2)

Disciplinary Core Ideas

PS3.B: Conservation of Energy and Energy Transfer
• Sunlight warms Earth’s surface. (K-PS3-1, K-PS3-2)

ESS2.D: Weather and Climate
• Weather is the combination of sunlight, wind, snow or rain, and temperature in a particular region at a particular time. People measure these conditions to describe and record the weather and to notice patterns over time. (K-ESS2-1)

ESS3.B: Natural Hazards
• Some kinds of severe weather are more likely than others in a given region. Weather scientists forecast severe weather so that the communities can prepare for and respond to these events. (K-ESS3-2)

ETS1.A: Defining and Delimiting an Engineering Problem
• Asking questions, making observations, and gathering information are helpful in thinking about problems. (K-ESS3-2)

Crosscutting Concepts

Patterns
• Patterns in the natural world can be observed, used to describe phenomena, and used as evidence. (K-ESS2-1)

Cause and Effect
• Events have causes that generate observable patterns. (K-PS3-1, K-PS3-2, K-ESS3-2)

Connections to Engineering, Technology, and Applications of Science

Interdependence of Science, Engineering, and Technology
• People encounter questions about the natural world every day. (K-ESS3-2)

Influence of Engineering, Technology, and Science on Society and the Natural World
• People depend on various technologies in their lives; human life would be very different without technology. (K-ESS3-2)
Obtaining, Evaluating, and Communicating Information

Obtaining, evaluating, and communicating information in K–2 builds on prior experiences and uses observations and texts to communicate new information.

- Read grade-appropriate texts and/or use media to obtain scientific information to describe patterns in the natural world. (K-ESS3-2)

Connections to Nature of Science

Scientific Investigations Use a Variety of Methods

- Scientists use different ways to study the world. (K-PS3-1)

Science Knowledge is Based on Empirical Evidence

- Scientists look for patterns and order when making observations about the world. (K-ESS2-1)

Connections to other DCIs in Kindergarten: K-2.ETS1.A (K-PS3-2, K-ESS3-2); K-2.ETS1.B (K-PS3-2)

Connections to other DCIs across grade levels: 1.PS4.B (K-PS3-1, K-PS3-2); 2.ESS1.C (K-ESS3-2); 2.ESS2.A (K-ESS2-1); K-2.ETS1.B (K-PS3-2); 3.ESS2.D (K-PS3-1, K-ESS2-1); 3.ESS3.B (K-ESS3-2); 4.ESS2.A (K-ESS2-1); 4.ESS3.B (K-ESS3-2); 4.ESS2.E (K-ESS2-2); 3-5.ETS1.A (K-PS3-2)

Common Core State Standards Connections:

ELA/Literacy –

RI.K.1 With prompting and support, ask and answer questions about key details in a text. (K-ESS3-2)
W.K.7 Participate in shared research and writing projects (e.g., explore a number of books by a favorite author and express opinions about them). (K-PS3-1, K-PS3-2, K-ESS2-1)
SL.K.3 Ask and answer questions in order to seek help, get information, or clarify something that is not understood. (K-ESS3-2)

Mathematics –

MP.2 Reason abstractly and quantitatively. (K-ESS2-1)
MP.4 Model with mathematics. (K-ESS2-1) (K-ESS3-2)
K.CC Counting and Cardinality (K-ESS3-2)
K.CC.A Know number names and the count sequence. (K-ESS2-1)
K.MD.A.1 Describe measurable attributes of objects, such as length or weight. Describe several measurable attributes of a single object. (K-ESS2-1)
K.MD.A.2 Directly compare two objects with a measurable attribute in common, to see which object has “more of” / “less of” the attribute, and describe the difference. (K-PS3-1, K-PS3-2)
K.MD.B.3 Classify objects into given categories; count the number of objects in each category and sort the categories by count. (K-ESS2-1)
Interdependent Relationships in Ecosystems: Animals, Plants, and Their Environment

Students who demonstrate understanding can:

K-LS1-1 Use observations to describe patterns of what plants and animals (including humans) need to survive.
[Clarification Statement: Examples of patterns could include that animals need to take in food but plants do not; the different kinds of food needed by different types of animals; the requirement of plants to have light; and that all living things need water.]

K-ESS2-2 Construct an argument supported by evidence for how plants and animals (including humans) can change the environment to meet their needs.
[Clarification Statement: Examples of plants and animals changing their environment could include squirrels digging in the ground to hide food and tree roots breaking concrete.]

K-ESS3-1 Use a model to represent the relationship between the needs of different plants or animals (including humans) and the places they live.
[Clarification Statement: Examples of relationships could include that deer eat buds and leaves, therefore, they usually live in forested areas; and grasses need sunlight so they often grow in meadows. Plants, animals, and their surroundings make up a system.]

K-ESS3-3 Communicate solutions that will reduce the impact of humans on the land, water, air, and/or other living things in the local environment.*
[Clarification Statement: Examples of human impact on the land could include cutting trees to produce paper and using resources to produce bottles. Examples of solutions could include reusing paper and recycling cans and bottles.]

The performance expectations above were developed using the following elements from the NRC document *A Framework for K–12 Science Education*:

<table>
<thead>
<tr>
<th>Science and Engineering Practices</th>
<th>Disciplinary Core Ideas</th>
<th>Crosscutting Concepts</th>
</tr>
</thead>
</table>
| **Developing and Using Models** Modeling in K–2 builds on prior experiences and progresses to include using and developing models (e.g., diagram, drawing, physical replica, diorama, dramaticization, or storyboard) that represent concrete events or design solutions.
• Use a model to represent relationships in the natural world. (K-ESS3-1) **LS1.C: Organization for Matter and Energy Flow in Organisms**
• All animals need food in order to live and grow. They obtain their food from plants or from other animals. Plants need water and light to live and grow. (K-LS1-1)
ESS2.E: Biogeology
• Plants and animals can change their environment. (K-ESS2-2)
ESS3.A: Natural Resources
• Living things need water, air, and resources from the land, and they live in places that have the things they need. Humans use natural resources for everything they do. (K-ESS3-1)
ESS3.C: Human Impacts on Earth Systems
• Things that people do to live comfortably can affect the world around them. But they can make choices that reduce their impacts on the land, water, air, and other living things. (K-ESS2-2, K-ESS3-3)
ETS1.B: Developing Possible Solutions
• Designs can be conveyed through sketches, drawings, or physical models. These representations are useful in communicating ideas for a problem’s solutions to other people. (K-ESS3-3) | **Patterns**
• Patterns in the natural and human designed world can be observed and used as evidence. (K-LS1-1)
Cause and Effect
• Events have causes that generate observable patterns. (K-ESS3-3)
Systems and System Models
• Systems in the natural and designed world have parts that work together. (K-ESS2-2, K-ESS3-1) |
Connections to Nature of Science

Scientific Knowledge is Based on Empirical Evidence

- Scientists look for patterns and order when making observations about the world. (K-LS1-1)

Connections to other DCIs in Kindergarten:

- **K-2.ETS1.A** (K-ESS3-3)

Connections to other DCIs across grade levels:

1. **1.LS1.A** (K-LS1-1, K-ESS3-1); **2.LS2.A** (K-LS1-1); **K-2.ETS1.B** (K-ESS3-3); **3.LS2.C** (K-LS1-1); **3.LS4.B** (K-LS1-1); **4.ESS2.E** (K-ESS2-2); **4.ESS3.A** (K-ESS3-3); **5.LS1.C** (K-LS1-1); **5.LS2.A** (K-LS1-1) (K-ESS3-1); **5.ESS2.A** (K-ESS2-2, K-ESS3-1); **5.ESS3.C** (K-ESS3-3)

Common Core State Standards Connections:

ELA/Literacy –

- **RI.K.1** With prompting and support, ask and answer questions about key details in a text. (K-ESS2-2)
- **W.K.1** Use a combination of drawing, dictating, and writing to compose opinion pieces in which they tell a reader the topic or the name of the book they are writing about and state an opinion or preference about the topic or book. (K-ESS2-2)
- **W.K.2** Use a combination of drawing, dictating, and writing to compose informative/explanatory texts in which they name what they are writing about and supply some information about the topic. (K-ESS2-2, K-ESS3-3)
- **W.K.7** Participate in shared research and writing projects (e.g., explore a number of books by a favorite author and express opinions about them). (K-LS1-1)

Mathematics –

- **MP.2** Reason abstractly and quantitatively. (K-ESS3-1)
- **MP.4** Model with mathematics. (K-ESS3-1)
- **K.CC** Counting and Cardinality (K-ESS3-1)

K.MD.A.2 Directly compare two objects with a measurable attribute in common, to see which object has “more of” / “less of” the attribute, and describe the difference. (K-LS1-1)
Engineering, Technology, and Applications of Science

Students who demonstrate understanding can:

K-ETS1-1 Ask questions, make observations, and gather information about a situation people want to change to define a simple problem that can be solved through the development of a new or improved object or tool.

K-ETS1-2 Develop a simple sketch, drawing, or physical model to illustrate how the shape of an object helps it function as needed to solve a given problem.

K-ETS1-3 Analyze data from tests of two objects designed to solve the same problem to compare the strengths and weaknesses of how each performs.

The performance expectations above were developed using the following elements from the NRC document: A Framework for K-12 Science Education:

Science and Engineering Practices

Asking Questions and Defining Problems
- Asking questions and defining problems in K–2 builds on prior experiences and progresses to simple descriptive questions.
- Ask questions based on observations to find more information about the natural and/or designed world. (K-ETS1-1)
- Define a simple problem that can be solved through the development of a new or improved object or tool. (K-ETS1-1)

Developing and Using Models
- Modeling in K–2 builds on prior experiences and progresses to include using and developing models (i.e., diagram, drawing, physical replica, diorama, dramatization, or storyboard) that represent concrete events or design solutions.
- Develop a simple model based on evidence to represent a proposed object or tool. (K-ETS1-2)

Analyzing and Interpreting Data
- Analyzing data in K–2 builds on prior experiences and progresses to collecting, recording, and sharing observations.
- Analyze data from tests of an object or tool to determine if it works as intended. (K-ETS1-3)

Disciplinary Core Ideas

ETS1.A: Defining and Delimiting Engineering Problems
- A situation that people want to change or create can be approached as a problem to be solved through engineering. (K-ETS1-1)
- Asking questions, making observations, and gathering information are helpful in thinking about problems. (K-ETS1-1)
- Before beginning to design a solution, it is important to clearly understand the problem. (K-ETS1-1)

ETS1.B: Developing Possible Solutions
- Designs can be conveyed through sketches, drawings, or physical models. These representations are useful in communicating ideas for a problem’s solutions to other people. (K-ETS1-2)

ETS1.C: Optimizing the Design Solution
- Because there is always more than one possible solution to a problem, it is useful to compare and test designs. (K-ETS1-3)

Crosscutting Concepts

Structure and Function
- The shape and stability of structures of natural and designed objects are related to their function(s). (K-ETS1-2)

Connections to K-2-ETS1.A: Defining and Delimiting Engineering Problems include: Kindergarten: (K-PS2-2, K-ESS3-2)

Connections to K-2-ETS1.B: Developing Possible Solutions to Problems include: Kindergarten: (K-ESS3-3); First Grade: (1-PS4-4); Second Grade: (2-LS2-2)

Connections to K-2-ETS1.C: Optimizing the Design Solution include: Second Grade: (2-ESS2-1)

Connections to other DCIs across grade levels: 3-5.ETS1.A (K-ETS1-1, K-ETS1-2, K-ETS1-3); 3-5.ETS1.B (K-ETS1-2, K-ETS1-3); 3-5.ETS1.C (K-ETS1-1, K-ETS1-2, K-ETS1-3)
Common Core State Standards Connections:

ELA/Literacy –

Ri.K.1 With prompting and support, ask and answer questions about key details in a text. (K-ETS1-1)

W.K.6 With guidance and support from adults, explore a variety of digital tools to produce and publish writing, including in collaboration with peers. (K-ETS1-1, K-ETS1-3)

W.K.8 With guidance and support from adults, recall information from experiences or gather information from provided sources to answer a question. (K-ETS1-1,K-ETS1-3)

SL.K.5 Add drawings or other visual displays to descriptions as desired to provide additional detail. (K-ETS1-2)

Mathematics –

MP.2 Reason abstractly and quantitatively. (K-ETS1-1, K-ETS1-3)

MP.4 Model with mathematics. (K-ETS1-1, K-ETS1-3)

MP.5 Use appropriate tools strategically. (K-ETS1-1, K-ETS1-3)
Waves: Light and Sound

Students who demonstrate understanding can:

1-PS4-1 **Plan and conduct investigations to provide evidence that vibrating materials can make sound and that sound can make materials vibrate.** [Clarification Statement: Examples of vibrating materials that make sound could include striking a tuning fork and plucking a stretched string. Examples of how sound can make matter vibrate could include holding a piece of paper near a speaker making sound and holding an object near a vibrating tuning fork.]

1-PS4-2 **Make observations to construct an evidence-based account that objects can be seen only when illuminated.** [Clarification Statement: Examples of observations could include those made in a completely dark room, a pinhole box, and a video of a cave explorer with a flashlight. Illumination could be from an external light source or by an object giving off its own light.]

1-PS4-3 **Plan and conduct an investigation to determine the effect of placing objects made with different materials in the path of a beam of light.** [Clarification Statement: Examples of materials could include those that are transparent (such as clear plastic), translucent (such as wax paper), opaque (such as cardboard), or reflective (such as a mirror).] [Assessment Boundary: Assessment does not include the speed of light.]

1-PS4-4 **Use tools and materials to design and build a device that uses light or sound to solve the problem of communicating over a distance.** [Clarification Statement: Examples of devices could include a light source to send signals, paper cup and string “telephones”, and a pattern of drum beats.] [Assessment Boundary: Assessment does not include technological details for how communication devices work.]

The performance expectations above were developed using the following elements from the NRC document *A Framework for K-12 Science Education*:

Science and Engineering Practices

Planning and Carrying Out Investigations

Planning and carrying out investigations to answer questions or test solutions to problems in K–2 builds on prior experiences and progresses to simple investigations, based on fair tests, which provide data to support explanations or design solutions.

- Plan and conduct investigations collaboratively to produce data to serve as the basis for evidence to answer a question. (1-PS4-1, 1-PS4-3)

Constructing Explanations and Designing Solutions

Constructing explanations and designing solutions in K–2 builds on prior experiences and progresses to the use of evidence and ideas in constructing evidence-based accounts of natural phenomena and design solutions.

- Make observations (firsthand or from media) to construct an evidence-based account for natural phenomena (1-PS4-2)
- Use tools and materials provided to design a device that solves a specific problem. (1-PS4-4)

Disciplinary Core Ideas

PS4.A: Wave Properties

- Sound can make matter vibrate, and vibrating matter can make sound. (1-PS4-1)

PS4.B: Electromagnetic Radiation

- Objects can be seen if light is available to illuminate them or if they give off their own light. (1-PS4-2)
- Some materials allow light to pass through them, others allow only some light through and others block all the light and create a dark shadow on any surface beyond them, where the light cannot reach. Mirrors can be used to redirect a light beam. (Boundary: The idea that light travels from place to place is developed through experiences with light sources, mirrors, and shadows, but no attempt is made to discuss the speed of light.) (1-PS4-3)

PS4.C: Information Technologies and Instrumentation

- People also use a variety of devices to communicate (send and receive information) over long distances. (1-PS4-4)

Crosscutting Concepts

Cause and Effect

- Simple tests can be designed to gather evidence to support or refute student ideas about causes. (1-PS4-1, 1-PS4-2, 1-PS4-3)

Connections to Engineering, Technology, and Applications of Science

Influence of Engineering, Technology, and Science, on Society and the Natural World

- People depend on various technologies in their lives; human life would be very different without technology. (1-PS4-4)
Connections to Nature of Science

Scientific Investigations Use a Variety of Methods
- Science investigations begin with a question. (1-PS4-1)
- Scientists use different ways to study the world. (1-PS4-1)

Connections to other DCIs in first grade: N/A

Connections to other DCIs across grade levels:
- **K-2.ETS1.A** (1-PS4-4);
- **2.PS1.A** (1-PS4-3);
- **K-2.ETS1.B** (1-PS4-4);
- **4.PS4.B** (1-PS4-4);
- **4.PS4.C** (1-PS4-4);
- **3-5.ETS1.A** (1-PS4-4)

Common Core State Standards Connections:

ELA/Literacy –

- **W.1.2** Write informative/explanatory texts in which they name a topic, supply some facts about the topic, and provide some sense of closure. (1-PS4-2)
- **W.1.7** Participate in shared research and writing projects (e.g., explore a number of “how-to” books on a given topic and use them to write a sequence of instructions). (1-PS4-1, 1-PS4-2, 1-PS4-3, 1-PS4-4)
- **W.1.8** With guidance and support from adults, recall information from experiences or gather information from provided sources to answer a question. (1-PS4-1, 1-PS4-2, 1-PS4-3)
- **SL.1.1** Participate in collaborative conversations with diverse partners about grade 1 topics and texts with peers and adults in small and larger groups. (1-PS4-1, 1-PS4-2, 1-PS4-3)

Mathematics –

- **MP.5** Use appropriate tools strategically. (1-PS4-4)
- **1.MD.A.1** Order three objects by length; compare the lengths of two objects indirectly by using a third object. (1-PS4-4)
- **1.MD.A.2** Express the length of an object as a whole number of length units, by layering multiple copies of a shorter object (the length unit) end to end; understand that the length measurement of an object is the number of same-size length units that span it with no gaps or overlaps. (1-PS4-4)
Students who demonstrate understanding can:

1-LS1-1 Use materials to design a solution to a human problem by mimicking how plants and/or animals use their external parts to help them survive, grow, and meet their needs.* [Clarification Statement: Examples of human problems that can be solved by mimicking plant or animal solutions could include designing clothing or equipment to protect bicyclists by mimicking turtle shells, acorn shells, and animal scales; stabilizing structures by mimicking animal tails and roots on plants; keeping out intruders by mimicking thorns on branches and animal quills; and detecting intruders by mimicking eyes or ears.]

1-LS1-2 Read texts and use media to determine patterns in behavior of parents and offspring that help offspring survive. [Clarification Statement: Examples of patterns of behaviors could include the signals that offspring make (such as crying, cheeping, and other vocalizations) or the responses of the parents (such as feeding, comforting, and protecting the offspring).]

1-LS3-1 Make observations to construct an evidence-based account that young plants and animals are like, but not exactly like, their parents. [Clarification Statement: Examples of patterns could include features plants or animals share. Examples of observations could include leaves from the same kind of plant are the same shape but can differ in size; and, a particular breed of dog looks like its parents but is not exactly the same.] [Assessment Boundary: Assessment does not include inheritance, animals that undergo metamorphosis or hybrids.]

The performance expectations above were developed using the following elements from the NRC document A Framework for K-12 Science Education:

<table>
<thead>
<tr>
<th>Science and Engineering Practices</th>
<th>Disciplinary Core Ideas</th>
<th>Crosscutting Concepts</th>
</tr>
</thead>
</table>
| **Constructing Explanations and Designing Solutions** | **LS1.A: Structure and Function**
 - All organisms have external parts. Different animals use their body parts in different ways to see, hear, grasp objects, protect themselves, move from place to place, and seek, find, and take in food, water and air. Plants also have different parts (roots, stems, leaves, flowers, fruits) that help them survive and grow. (1-LS1-1)
 - Use materials to design a device that solves a specific problem or a solution to a specific problem. (1-LS1-1)
 - Make observations (firsthand or from media) to construct an evidence-based account for natural phenomena. (1-LS3-1)
 - Use materials to design a device that solves a specific problem or a solution to a specific problem. (1-LS1-1) | **Patterns**
 - Patterns in the natural world can be observed, used to describe phenomena, and used as evidence. (1-LS1-2, 1-LS3-1)
 - The shape and stability of structures of natural and designed objects are related to their function(s). (1-LS1-1) |
| **Obtaining, Evaluating, and Communicating Information** | **LS1.B: Growth and Development of Organisms**
 - Adult plants and animals can have young. In many kinds of animals, parents and the offspring themselves engage in behaviors that help the offspring to survive. (1-LS1-2)
 - Plants also respond to some external inputs. (1-LS1-1) | **Structure and Function**
 - Every human-made product is designed by applying some knowledge of the natural world and is built using materials derived from the natural world. (1-LS1-1) |
| **Influence of Engineering, Technology, and Applications of Science** | **LS3.A: Inheritance of Traits**
 - Young animals are very much, but not exactly, like their parents. Plants also are very much, but not exactly, like their parents. (1-LS3-1) | **Connections to Engineering, Technology, and Applications of Science**
 - Every human-made product is designed by applying some knowledge of the natural world and is built using materials derived from the natural world. (1-LS1-1) |
| **LS3.B: Variation of Traits**
 - Individuals of the same kind of plant or animal are recognizable as similar but can also vary in many ways. (1-LS3-1) | **Influence of Engineering, Technology, and Applications of Science** |
Connections to Nature of Science

Scientific Knowledge is Based on Empirical Evidence

- Scientists look for patterns and order when making observations about the world. (1-LS1-2)

Connections to other DCIs in first grade: N/A

Connections to other DCIs across grade levels:
- **K-ETS1.A** (1-LS1-1); **3-LS2.D** (1-LS1-2) **3-LS3.A** (1-LS3-1); **3-LS3.B** (1-LS3-1); **4-LS1.A** (1-LS1-1); **4-LS1.D** (1-LS1-1); **3-5.ETS1.A** (1-LS1-1)

Common Core State Standards Connections:

ELA/Literacy –

- **RI.1.1** Ask and answer questions about key details in a text. (1-LS1-2, 1-LS3-1)
- **RI.1.2** Identify the main topic and retell key details of a text. (1-LS1-2)
- **RI.1.10** With prompting and support, read informational texts appropriately complex for grade. (1-LS1-2)
- **W.1.7** Participate in shared research and writing projects (e.g., explore a number of “how-to” books on a given topic and use them to write a sequence of instructions). (1-LS1-1, 1-LS3-1)
- **W.1.8** With guidance and support from adults, recall information from experiences or gather information from provided sources to answer a question. (1-LS3-1)

Mathematics –

- **MP.2** Reason abstractly and quantitatively. (1-LS3-1)
- **MP.5** Use appropriate tools strategically. (1-LS3-1)
- **1.NBT.B.3** Compare two two-digit numbers based on the meanings of the tens and one digits, recording the results of comparisons with the symbols >, =, and <. (1-LS1-2)
- **1.NBT.C.4** Add within 100, including adding a two-digit number and a one-digit number, and adding a two-digit number and a multiple of 10, using concrete models or drawings and strategies based on place value, properties of operations, and/or the relationship between addition and subtraction; relate the strategy to a written method and explain the reasoning used. Understand that in adding two-digit numbers, one adds tens and tens, ones and ones; and sometimes it is necessary to compose a ten. (1-LS1-2)
- **1.NBT.C.5** Given a two-digit number, mentally find 10 more or 10 less than the number, without having to count; explain the reasoning used. (1-LS1-2)
- **1.NBT.C.6** Subtract multiples of 10 in the range 10-90 from multiples of 10 in the range 10-90 (positive or zero differences), using concrete models or drawings and strategies based on place value, properties of operations, and/or the relationship between addition and subtraction; relate the strategy to a written method and explain the reasoning used. (1-LS1-2)
- **1.MD.A.1** Order three objects by length; compare the lengths of two objects indirectly by using a third object. (1-LS3-1)
Grade One: Space Systems: Patterns and Cycles

Students who demonstrate understanding can:

1-ESS1-1 **Use observations of the sun, moon, and stars to describe patterns that can be predicted.** [Clarification Statement: Examples of patterns could include that the sun and moon appear to rise in one part of the sky, move across the sky, and set; and stars, other than our sun, are visible at night but not during the day.] [Assessment Boundary: Assessment of star patterns is limited to stars being seen at night and not during the day.]

1-ESS1-2 **Make observations at different times of year to relate the amount of daylight to the time of year.** [Clarification Statement: Emphasis is on relative comparisons of the amount of daylight in the winter to the amount in the spring or fall.] [Assessment Boundary: Assessment is limited to relative amounts of daylight, not quantifying the hours or time of daylight.]

The performance expectations above were developed using the following elements from the NRC document *A Framework for K-12 Science Education*:

<table>
<thead>
<tr>
<th>Science and Engineering Practices</th>
<th>Disciplinary Core Ideas</th>
<th>Crosscutting Concepts</th>
</tr>
</thead>
</table>
| Planning and Carrying Out Investigations | ESS1.A: The Universe and its Stars
- Patterns of the motion of the sun, moon, and stars in the sky can be observed, described, and predicted. (1-ESS1-1) | Patterns
- Patterns in the natural world can be observed, used to describe phenomena, and used as evidence. (1-ESS1-1, 1-ESS1-2) |
| Analyzing and Interpreting Data | ESS1.B: Earth and the Solar System
- Seasonal patterns of sunrise and sunset can be observed, described, and predicted. (1-ESS1-2) | Connections to Nature of Science
- Scientific Knowledge Assumes an Order and Consistency in Natural Systems
- Science assumes natural events happen today as they happened in the past. (1-ESS1-1)
- Many events are repeated. (1-ESS1-1) |

Connections to other DCIs in first grade: N/A

Connections to other DCIs across grade levels: 3.PS2.A (1-ESS1-1); 5.PS2.B (1-ESS1-1, 1-ESS1-2) 5-ESS1.B (1-ESS1-1, 1-ESS1-2)

Common Core State Standards Connections:

ELA/Literacy –

W.1.7 Participate in shared research and writing projects (e.g., explore a number of "how-to" books on a given topic and use them to write a sequence of instructions). (1-ESS1-1, 1-ESS1-2)

W.1.8 With guidance and support from adults, recall information from experiences or gather information from provided sources to answer a question. (1-ESS1-1, 1-ESS1-2)

Mathematics –

MP.2 Reason abstractly and quantitatively. (1-ESS1-2)

MP.4 Model with mathematics. (1-ESS1-2)

MP.5 Use appropriate tools strategically. (1-ESS1-2)

1.OA.A.1 Use addition and subtraction within 20 to solve word problems involving situations of adding to, taking from, putting together, taking apart, and comparing, with unknowns in all positions, e.g., by using objects, drawings, and equations to represent the problem. (1-ESS1-2)

1.MD.C.4 Organize, represent, and interpret data with up to three categories; ask and answer questions about the total number of data points, how many in each category, and how many more or less are in one category than in another. (1-ESS1-2)
Engineering, Technology, and Applications of Science

Students who demonstrate understanding can:

1-ETS1-1 **Ask questions, make observations, and gather information about a situation people want to change to define a simple problem that can be solved through the development of a new or improved object or tool.**

1-ETS1-2 **Develop a simple sketch, drawing, or physical model to illustrate how the shape of an object helps it function as needed to solve a given problem.**

1-ETS1-3 **Analyze data from tests of two objects designed to solve the same problem to compare the strengths and weaknesses of how each performs.**

The performance expectations above were developed using the following elements from the NRC document *A Framework for K-12 Science Education*:

Science and Engineering Practices

Asking Questions and Defining Problems

- Asking questions and defining problems in K–2 builds on prior experiences and progresses to simple descriptive questions.
 - Ask questions based on observations to find more information about the natural and/or designed world. (1-ETS1-1)
 - Define a simple problem that can be solved through the development of a new or improved object or tool. (1-ETS1-1)

Developing and Using Models

- Modeling in K–2 builds on prior experiences and progresses to include using and developing models (i.e., diagram, drawing, physical replica, diorama, dramatization, or storyboard) that represent concrete events or design solutions.
 - Develop a simple model based on evidence to represent a proposed object or tool. (1-ETS1-2)

Analyzing and Interpreting Data

- Analyzing data in K–2 builds on prior experiences and progresses to collecting, recording, and sharing observations.
 - Analyze data from tests of an object or tool to determine if it works as intended. (1-ETS1-3)

Disciplinary Core Ideas

ETS1.A: Defining and Delimiting Engineering Problems

- A situation that people want to change or create can be approached as a problem to be solved through engineering. (1-ETS1-1)
 - Asking questions, making observations, and gathering information are helpful in thinking about problems. (1-ETS1-1)
 - Before beginning to design a solution, it is important to clearly understand the problem. (1-ETS1-1)

ETS1.B: Developing Possible Solutions

- Designs can be conveyed through sketches, drawings, or physical models. These representations are useful in communicating ideas for a problem’s solutions to other people. (1-ETS1-2)

ETS1.C: Optimizing the Design Solution

- Because there is always more than one possible solution to a problem, it is useful to compare and test designs. (1-ETS1-3)

Crosscutting Concepts

Structure and Function

- The shape and stability of structures of natural and designed objects are related to their function(s). (1-ETS1-2)

Connections to K-2-ETS1.A: Defining and Delimiting Engineering Problems include: Kindergarten: (K-PS2-2, K-ESS3-2)

Connections to K-2-ETS1.B: Developing Possible Solutions to Problems include: Kindergarten: (K-ESS3-3); First Grade: (1-PS4-4); Second Grade: (2-LS2-2)

Connections to K-2-ETS1.C: Optimizing the Design Solution include: Second Grade: (2-ESS2-1)

Connections to other DCIs across grade levels: 3-5.ETS1.A (1-ETS1-1, 1-ETS1-2, 1-ETS1-3); 3-5.ETS1.B (1-ETS1-2, 1-ETS1-3); 3-5.ETS1.C (1-ETS1-1, 1-ETS1-2, 1-ETS1-3)
Common Core State Standards Connections:

ELA/Literacy –

RI.1.1 Ask and answer questions about key details in a text. (1-ETS1-1)

W.1.6 With guidance and support from adults, use a variety of digital tools to produce and publish writing, including in collaboration with peers. (1-ETS1-1, 1-ETS1-3)

W.1.8 With guidance and support from adults, recall information from experiences or gather information from provided sources to answer a question. (1-ETS1-1,1-ETS1-3)

SL.1.5 Add drawings or other visual displays to descriptions when appropriate to clarify ideas, thoughts, and feelings. (1-ETS1-2)

Mathematics –

MP.2 Reason abstractly and quantitatively. (1-ETS1-1, 1-ETS1-3)

MP.4 Model with mathematics. (1-ETS1-1, 1-ETS1-3)

MP.5 Use appropriate tools strategically. (1-ETS1-1, 1-ETS1-3)
GRADE TWO

Structure and Properties of Matter

Students who demonstrate understanding can:

2-PS1-1 Plan and conduct an investigation to describe and classify different kinds of materials by their observable properties. [Clarification Statement: Observations could include color, texture, hardness, and flexibility. Patterns could include the similar properties that different materials share.]

2-PS1-2 Analyze data obtained from testing different materials to determine which materials have the properties that are best suited for an intended purpose.* [Clarification Statement: Examples of properties could include, strength, flexibility, hardness, texture, and absorbency.] [Assessment Boundary: Assessment of quantitative measurements is limited to length.]

2-PS1-3 Make observations to construct an evidence-based account of how an object made of a small set of pieces can be disassembled and made into a new object. [Clarification Statement: Examples of pieces could include blocks, building bricks, or other assorted small objects.]

2-PS1-4 Construct an argument with evidence that some changes caused by heating or cooling can be reversed and some cannot. [Clarification Statement: Examples of reversible changes could include materials such as water or butter at different temperatures. Examples of irreversible changes could include cooking an egg, freezing a plant leaf, and heating paper.]

The performance expectations above were developed using the following elements from the NRC document A Framework for K-12 Science Education:

<table>
<thead>
<tr>
<th>Science and Engineering Practices</th>
<th>Disciplinary Core Ideas</th>
<th>Crosscutting Concepts</th>
</tr>
</thead>
<tbody>
<tr>
<td>Planning and Carrying Out Investigations Planning and carrying out investigations to answer questions or test solutions to problems in K–2 builds on prior experiences and progresses to simple investigations, based on fair tests, which provide data to support explanations or design solutions.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>□ Plan and conduct an investigation collaboratively to produce data to serve as the basis for evidence to answer a question. (2-PS1-1)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Analyzing and Interpreting Data Analyzing data in K–2 builds on prior experiences and progresses to collecting, recording, and sharing observations.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>□ Analyze data from tests of an object or tool to determine if it works as intended. (2-PS1-2)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Constructing Explanations and Designing Solutions Constructing explanations and designing solutions in K–2 builds on prior experiences and progresses to the use of evidence and ideas in constructing evidence-based accounts of natural phenomena and designing solutions.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>□ Make observations (firsthand or from media) to construct an evidence-based account for natural phenomena. (2-PS1-3)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Engaging in Argument from Evidence Engaging in argument from evidence in K–2 builds on prior experiences and progresses to comparing ideas and representations about the natural and designed world(s).</td>
<td></td>
<td></td>
</tr>
<tr>
<td>□ Construct an argument with evidence to support a claim. (2-PS1-4)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

• Differences kinds of matter exist and many of them can be either solid or liquid, depending on temperature. Matter can be described and classified by its observable properties. (2-PS1-1)

• Different properties are suited to different purposes. (2-PS1-2, 2-PS1-3)

• A great variety of objects can be built up from a small set of pieces. (2-PS1-3)

PS1.B: Chemical Reactions

• Heating or cooling a substance may cause changes that can be observed. Sometimes these changes are reversible, and sometimes they are not. (2-PS1-4)

Patterns

• Patterns in the natural and human designed world can be observed. (2-PS1-1)

Cause and Effect

• Events have causes that generate observable patterns. (2-PS1-4)

• Simple tests can be designed to gather evidence to support or refute student ideas about causes. (2-PS1-2)

Energy and Matter

• Objects may break into smaller pieces and be put together into larger pieces, or change shapes. (2-PS1-3)

Connections to Engineering, Technology, and Applications of Science

Influence of Engineering, Technology, and Science on Society and the Natural World

• Every human-made product is designed by applying some knowledge of the natural world and is built using materials derived from the natural world. (2-PS1-2)
<table>
<thead>
<tr>
<th>Connections to Nature of Science</th>
</tr>
</thead>
<tbody>
<tr>
<td>Science Models, Laws, Mechanisms, and Theories Explain Natural Phenomena</td>
</tr>
<tr>
<td>- Scientists search for cause and effect relationships to explain natural events. (2-PS1-4)</td>
</tr>
</tbody>
</table>

Connections to other DCIs in second grade: N/A

Connections to other DCIs across grade levels:
- 4.ESS2.A (2-PS1-3);
- 5.PS1.A (2-PS1-1, 2-PS1-2, 2-PS1-3);
- 5.PS1.B (2-PS1-4);
- 5.LS2.A (2-PS1-3)

Common Core State Standards Connections:

ELA/Literacy –

RI.2.1	Ask and answer such questions as who, what, where, when, why, and how to demonstrate understanding of key details in a text. (2-PS1-4)
RI.2.3	Describe the connection between a series of historical events, scientific ideas or concepts, or steps in technical procedures in a text. (2-PS1-4)
RI.2.8	Describe how reasons support specific points the author makes in a text. (2-PS1-2, 2-PS1-4)
W.2.1	Write opinion pieces in which they introduce the topic or book they are writing about, state an opinion, supply reasons that support the opinion, use linking words (e.g., because, and, also) to connect opinion and reasons, and provide a concluding statement or section. (2-PS1-4)
W.2.7	Participate in shared research and writing projects (e.g., read a number of books on a single topic to produce a report; record science observations). (2-PS1-1, 2-PS1-2, 2-PS1-3)
W.2.8	Recall information from experiences or gather information from provided sources to answer a question. (2-PS1-1, 2-PS1-2, 2-PS1-3)

Mathematics –

MP.2	Reason abstractly and quantitatively. (2-PS1-2)
MP.4	Model with mathematics. (2-PS1-1, 2-PS1-2)
MP.5	Use appropriate tools strategically. (2-PS1-2)

| 2.MD.D.10 | Draw a picture graph and a bar graph (with single-unit scale) to represent a data set with up to four categories. Solve simple put-together, take-apart, and compare problems using information presented in a bar graph. (2-PS1-1, 2-PS1-2) |
Grade Two

Interdependent Relationships in Ecosystems

Students who demonstrate understanding can:

- **2-LS2-1** Plan and conduct an investigation to determine if plants need sunlight and water to grow.
 [Assessment Boundary: Assessment is limited to testing one variable at a time.]
- **2-LS2-2** Develop a simple model that mimics the function of an animal in dispersing seeds or pollinating plants.*
- **2-LS4-1** Make observations of plants and animals to compare the diversity of life in different habitats.
 [Clarification Statement: Emphasis is on the diversity of living things in a variety of habitats.]
 [Assessment Boundary: Assessment does not include specific animal and plant names in specific habitats.]

The performance expectations above were developed using the following elements from the NRC document *A Framework for K-12 Science Education*:

<table>
<thead>
<tr>
<th>Science and Engineering Practices</th>
<th>Disciplinary Core Ideas</th>
<th>Crosscutting Concepts</th>
</tr>
</thead>
</table>
| **Developing and Using Models** | **LS2.A: Interdependent Relationships in Ecosystems**
 - Plants depend on water and light to grow. (2-LS2-1)
 - Plants depend on animals for pollination or to move their seeds around. (2-LS2-2)
 LS4.D: Biodiversity and Humans
 - There are many different kinds of living things in any area, and they exist in different places on land and in water. (2-LS4-1)
 ETS1.B: Developing Possible Solutions
 - Designs can be conveyed through sketches, drawings, or physical models. These representations are useful in communicating ideas for a problem’s solutions to other people. (2-LS2-2) | **Cause and Effect**
 - Events have causes that generate observable patterns. (2-LS2-1)
 Structure and Function
 - The shape and stability of structures of natural and designed objects are related to their function(s). (2-LS2-2) |

Connections to Nature of Science

Scientific Knowledge is Based on Empirical Evidence

- Scientists look for patterns and order when making observations about the world. (2-LS4-1)

Connections to other DCIs in second grade: N/A

Connections to other DCIs across grade levels:

- K.LS1.C (2-LS2-1); K-ESS3.A (2-LS2-1); K-ETS1.A (2-LS2-2); 3.LS4.C (2-LS4-1); 3.LS4.D (2-LS4-1); 5.LS1.C (2-LS2-1); 5.LS2.A (2-LS2-2, 2-LS4-1)
Common Core State Standards Connections:

ELA/Literacy –

W.2.7 Participate in shared research and writing projects (e.g., read a number of books on a single topic to produce a report; record science observations). (2-LS2-1, 2-LS4-1)

W.2.8 Recall information from experiences or gather information from provided sources to answer a question. (2-LS2-1, 2-LS4-1)

SL.2.5 Create audio recordings of stories or poems; add drawings or other visual displays to stories or recounts of experiences when appropriate to clarify ideas, thoughts, and feelings. (2-LS2-2)

Mathematics –

MP.2 Reason abstractly and quantitatively. (2-LS2-1, 2-LS4-1)

MP.4 Model with mathematics. (2-LS2-1, 2-LS2-2, 2-LS4-1)

MP.5 Use appropriate tools strategically. (2-LS2-1)

2.MD.D.10 Draw a picture graph and a bar graph (with single-unit scale) to represent a data set with up to four categories. Solve simple put-together, take-apart, and compare problems. (2-LS2-2, 2-LS4-1)
Earth’s Systems: Processes that Shape the Earth

Students who demonstrate understanding can:

2-ESS1-1 Use information from several sources to provide evidence that Earth events can occur quickly or slowly. [Clarification Statement: Examples of events and timescales could include volcanic explosions and earthquakes, which happen quickly and erosion of rocks, which occurs slowly.] [Assessment Boundary: Assessment does not include quantitative measurements of timescales.]

2-ESS2-1 Compare multiple solutions designed to slow or prevent wind or water from changing the shape of the land.* [Clarification Statement: Examples of solutions could include different designs of dikes and windbreaks to hold back wind and water, and different designs for using shrubs, grass, and trees to hold back the land.]

2-ESS2-2 Develop a model to represent the shapes and kinds of land and bodies of water in an area. [Assessment Boundary: Assessment does not include quantitative scaling in models.]

2-ESS2-3 Obtain information to identify where water is found on Earth and that it can be solid or liquid.

The performance expectations above were developed using the following elements from the NRC document A Framework for K-12 Science Education:

<table>
<thead>
<tr>
<th>Science and Engineering Practices</th>
<th>Disciplinary Core Ideas</th>
<th>Crosscutting Concepts</th>
</tr>
</thead>
<tbody>
<tr>
<td>Developing and Using Models</td>
<td>ESS.C: The History of Planet Earth</td>
<td></td>
</tr>
<tr>
<td>Modeling in K–2 builds on prior experiences and progresses to include using and developing models (i.e., diagram, drawing, physical replica, diorama, dramatization, or storyboard) that represent concrete events or design solutions.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>• Develop a model to represent patterns in the natural world. (2-ESS2-2)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Constructing Explanations and Designing Solutions</td>
<td>• Some events happen very quickly; others occur very slowly, over a time period much longer than one can observe. (2-ESS1-1)</td>
<td></td>
</tr>
<tr>
<td>Constructing explanations and designing solutions in K–2 builds on prior experiences and progresses to the use of evidence and ideas in constructing evidence-based accounts of natural phenomena and designing solutions.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>• Make observations from several sources to construct an evidence-based account for natural phenomena. (2-ESS1-1)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>• Compare multiple solutions to a problem. (2-ESS2-1)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Obtaining, Evaluating, and Communicating Information</td>
<td>• Wind and water can change the shape of the land. (2-ESS2-1)</td>
<td></td>
</tr>
<tr>
<td>Obtaining, evaluating, and communicating information in K–2 builds on prior experiences and uses observations and texts to communicate new information.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>• Obtain information using various texts, text features (e.g., headings, tables of contents, glossaries, electronic menus, icons), and other media that will be useful in answering a scientific question. (2-ESS2-3)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Connections to other DCIs in second grade: 2.PS1.A (2-ESS2-3)

Connections to other DCIs across grade levels: K-2.ESS1.A (2-ESS2-1); 3.LS2.C (2-ESS1-1); 4.ESS1.C (2-ESS1-1); 4.ESS2.A (2-ESS1-1, 2-ESS2-1); 4.ESS2.B (2-ESS2-2); 3-5.ETS1.A (2-ESS2-1); 3-5.ETS1.B (2-ESS2-1); 3-5.ETS1.C (2-ESS2-1); 5.ESS2.A (2-ESS2-1); 5.ESS2.C (2-ESS2-2, 2-ESS2-3)
Common Core State Standards Connections:

ELA/Literacy –

RI.2.1 Ask and answer such questions as who, what, where, when, why, and how to demonstrate understanding of key details in a text. (2-ESS1-1)

RI.2.3 Describe the connection between a series of historical events, scientific ideas or concepts, or steps in technical procedures in a text. (2-ESS1-1, 2-ESS2-1)

RI.2.9 Compare and contrast the most important points presented by two texts on the same topic. (2-ESS2-1)

W.2.6 With guidance and support from adults, use a variety of digital tools to produce and publish writing, including in collaboration with peers. (2-ESS1-1, 2-ESS2-3)

W.2.7 Participate in shared research and writing projects (e.g., read a number of books on a single topic to produce a report; record science observations). (2-ESS1-1)

W.2.8 Recall information from experiences or gather information from provided sources to answer a question. (2-ESS1-1, 2-ESS2-3)

SL.2.2 Recount or describe key ideas or details from a text read aloud or information presented orally or through other media. (2-ESS1-1)

SL.2.5 Create audio recordings of stories or poems; add drawings or other visual displays to stories or recounts of experiences when appropriate to clarify ideas, thoughts, and feelings. (2-ESS2-2)

Mathematics –

MP.2 Reason abstractly and quantitatively. (2-ESS2-1, 2-ESS2-1, 2-ESS2-2)

MP.4 Model with mathematics. (2-ESS1-1, 2-ESS2-1, 2-ESS2-2)

MP.5 Use appropriate tools strategically. (2-ESS1-1)

2.NBT.A Understand place value. (2-ESS1-1)

2.NBT.A.3 Read and write numbers to 1000 using base-ten numerals, number names, and expanded form. (2-ESS2-2)

2.MD.B.5 Use addition and subtraction within 100 to solve word problems involving lengths that are given in the same units, e.g., by using drawings (such as drawings of rulers) and equations with a symbol for the unknown number to represent the problem. (2-ESS2-1)
GRADE TWO

Engineering, Technology, and Applications of Science

Students who demonstrate understanding can:

2-ETS1-1 Ask questions, make observations, and gather information about a situation people want to change to define a simple problem that can be solved through the development of a new or improved object or tool.

2-ETS1-2 Develop a simple sketch, drawing, or physical model to illustrate how the shape of an object helps it function as needed to solve a given problem.

2-ETS1-3 Analyze data from tests of two objects designed to solve the same problem to compare the strengths and weaknesses of how each performs.

The performance expectations above were developed using the following elements from the NRC document A Framework for K-12 Science Education:

<table>
<thead>
<tr>
<th>Science and Engineering Practices</th>
<th>Disciplinary Core Ideas</th>
<th>Crosscutting Concepts</th>
</tr>
</thead>
<tbody>
<tr>
<td>Asking Questions and Defining Problems</td>
<td>ETS1.A: Defining and Delimiting Engineering Problems</td>
<td>Structure and Function</td>
</tr>
</tbody>
</table>
| Asking questions and defining problems in K–2 builds on prior experiences and progresses to simple descriptive questions.
 • Ask questions based on observations to find more information about the natural and/or designed world. (2-ETS1-1)
 • Define a simple problem that can be solved through the development of a new or improved object or tool. (2-ETS1-1) | • A situation that people want to change or create can be approached as a problem to be solved through engineering. (2-ETS1-1)
• Asking questions, making observations, and gathering information are helpful in thinking about problems. (2-ETS1-1)
• Before beginning to design a solution, it is important to clearly understand the problem. (2-ETS1-1) | • The shape and stability of structures of natural and designed objects are related to their function(s). (2-ETS1-2) |
| **Developing and Using Models** | **ETS1.B: Developing Possible Solutions** | |
| Modeling in K–2 builds on prior experiences and progresses to include using and developing models (i.e., diagram, drawing, physical replica, diorama, dramatization, or storyboard) that represent concrete events or design solutions.
 • Develop a simple model based on evidence to represent a proposed object or tool. (2-ETS1-2) | • Designs can be conveyed through sketches, drawings, or physical models. These representations are useful in communicating ideas for a problem’s solutions to other people. (2-ETS1-2) | |
| **Analyzing and Interpreting Data** | **ETS1.C: Optimizing the Design Solution** | |
| Analyzing data in K–2 builds on prior experiences and progresses to collecting, recording, and sharing observations.
 • Analyze data from tests of an object or tool to determine if it works as intended. (2-ETS1-3) | • Because there is always more than one possible solution to a problem, it is useful to compare and test designs. (2-ETS1-3) | |

Connections to K-2-ETS1.A: Defining and Delimiting Engineering Problems include: Kindergarten: (K-PS2-2, K-ESS3-2)
Connections to K-2-ETS1.B: Developing Possible Solutions to Problems include: Kindergarten: (K-ESS3-3);
First Grade: (1-PS4-4); Second Grade: (2-LS2-2)
Connections to K-2-ETS1.C: Optimizing the Design Solution include: Second Grade: (2-ESS2-1)
Connections to other DCIs across grade levels: 3-5.ETS1.A (2-ETS1-1, 2-ETS1-2, 2-ETS1-3); 3-5.ETS1.B (2-ETS1-2, 2-ETS1-3); 3-5.ETS1.C (2-ETS1-1, 2-ETS1-2, 2-ETS1-3)
Common Core State Standards Connections:

ELA/Literacy –

RI.2.1 Ask and answer such questions as who, what, where, when, why, and how to demonstrate understanding of key details in a text. (2-ETS1-1)

W.2.6 With guidance and support from adults, use a variety of digital tools to produce and publish writing, including in collaboration with peers. (2-ETS1-1, 2-ETS1-3)

W.2.8 Recall information from experiences or gather information from provided sources to answer a question. (2-ETS1-1, 2-ETS1-3)

SL.2.5 Create audio recordings of stories or poems; add drawings or other visual displays to stories or recounts of experiences when appropriate to clarify ideas, thoughts, and feelings. (2-ETS1-2)

Mathematics –

MP.2 Reason abstractly and quantitatively. (2-ETS1-1, 2-ETS1-3)

MP.4 Model with mathematics. (2-ETS1-1, 2-ETS1-3)

MP.5 Use appropriate tools strategically. (2-ETS1-1, 2-ETS1-3)

2.MD.D.10 Draw a picture graph and a bar graph (with single-unit scale) to represent a data set with up to four categories. Solve simple put-together, take-apart, and compare problems using information presented in a bar graph. (2-ETS1-1, 2-ETS1-3)
Forces and Interactions

Students who demonstrate understanding can:

3-PS2-1 Plan and conduct an investigation to provide evidence of the effects of balanced and unbalanced forces on the motion of an object. [AR Clarification Statement: Examples could include an unbalanced force on one side of a box can make it start moving or balanced forces pushing on a box from both sides will not produce any motion at all.] [Assessment Boundary: Assessment is limited to one variable at a time: number, size, or direction of forces. Assessment does not include quantitative force size, only qualitative and relative. Assessment is limited to gravity being addressed as a force that pulls objects down.]

3-PS2-2 Make observations and/or measurements of an object’s motion to provide evidence that a pattern can be used to predict future motion. [Clarification Statement: Examples of motion with a predictable pattern could include a child swinging in a swing, a ball rolling back and forth in a bowl, and two children on a see-saw.] [Assessment Boundary: Assessment does not include technical terms such as period and frequency.]

3-PS2-3 Ask questions to determine cause and effect relationships of electric or magnetic interactions between two objects not in contact with each other. [Clarification Statement: Examples of an electric force could include the force on hair from an electrically charged balloon or the electrical forces between a charged rod and pieces of paper; examples of a magnetic force could include the force between two permanent magnets, the force between an electromagnet and steel paperclips, and the force exerted by one magnet versus the force exerted by two magnets. Examples of cause and effect relationships could include how the distance between objects affects strength of the force or how the orientation of magnets affects the direction of the magnetic force.] [Assessment Boundary: Assessment is limited to forces produced by objects that can be manipulated by students, and electrical interactions are limited to static electricity.]

3-PS2-4 Define a simple design problem that can be solved by applying scientific ideas about magnets.* [Clarification Statement: Examples of problems could include constructing a latch to keep a door shut and creating a device to keep two moving objects from touching each other.]

The performance expectations above were developed using the following elements from the NRC document A Framework for K-12 Science Education:

- **Science and Engineering Practices**
 - **Asking Questions and Defining Problems**
 - Asking questions and defining problems in grades 3–5 builds on grades K–2 experiences and progresses to specifying qualitative relationships.
 - Ask questions that can be investigated based on patterns such as cause and effect relationships. (3-PS2-3)
 - Define a simple problem that can be solved through the development of a new or improved object or tool. (3-PS2-4)
 - **Planning and Carrying Out Investigations**
 - Planning and carrying out investigations to answer questions or test solutions to problems in 3–5 builds on K–2 experiences and progresses to include investigations that control variables and provide evidence to support explanations or design solutions.
 - Plan and conduct an investigation collaboratively to produce data to serve as the basis for evidence, using fair tests in which variables are controlled and the number of trials considered. (3-PS2-1)
 - Make observations and/or measurements to produce data to serve as the basis for evidence for an explanation of a phenomenon or test a design solution. (3-PS2-2)

- **Disciplinary Core Ideas**
 - **PS2.A: Forces and Motion**
 - Each force acts on one particular object and has both strength and a direction. An object at rest typically has multiple forces acting on it, but they add to give zero net force on the object. Forces that do not sum to zero can cause changes in the object’s speed or direction of motion. (Boundary: Qualitative and conceptual, but not quantitative addition of forces are used at this level.) (3-PS2-1)
 - The patterns of an object’s motion in various situations can be observed and measured; when that past motion exhibits a regular pattern, future motion can be predicted from it. (Boundary: Technical terms, such as magnitude, velocity, momentum, and vector quantity, are not introduced at this level, but the concept that some quantities need both size and direction to be described is developed.) (3-PS2-2)

- **Crosscutting Concepts**
 - **Patterns**
 - Patterns of change can be used to make predictions. (3-PS2-2)
 - **Cause and Effect**
 - Cause and effect relationships are routinely identified. (3-PS2-1)
 - Cause and effect relationships are routinely identified, tested, and used to explain change. (3-PS2-3)
Connections to Nature of Science

Science Knowledge is Based on Empirical Evidence
- Science findings are based on recognizing patterns. (3-PS2-2)

Scientific Investigations Use a Variety of Methods
- Science investigations use a variety of methods, tools, and techniques. (3-PS2-1)

PS2.B: Types of Interactions
- Objects in contact exert forces on each other. (3-PS2-1)
- Electric and magnetic forces between a pair of objects do not require that the objects be in contact. The sizes of the forces in each situation depend on the properties of the objects and their distances apart and, for forces between two magnets, on their orientation relative to each other. (3-PS2-3, 3-PS2-4)

Connections to Engineering, Technology, and Applications of Science

Interdependence of Science, Engineering, and Technology
- Scientific discoveries about the natural world can often lead to new and improved technologies, which are developed through the engineering design process. (3-PS2-4)

Connections to other DCIs in third grade: N/A

Connections to other DCIs across grade levels:
- K.PS2.A (3-PS2-1); K.PS2.B (3-PS2-1); K.PS2.C (3-PS2-1); K.ETS1.A (3-PS2-4); 1.ESS1.A (3-PS2-2); 4.PS4.A (3-PS2-2); 3-5.ETS1.A (3-PS2-4); 5.PS2.B (3-PS2-1); 7.ESS2.C (3-PS2-1); 8.PS2.A (3-PS2-1, 3-PS2-2); 8.PS2.B (3-PS2-3, 3-PS2-4); 8.ESS1.B (3-PS2-1, 3-PS2-2)

Common Core State Standards Connections:

ELA/Literacy –
- RI.3.1 Ask and answer questions to demonstrate understanding of a text, referring explicitly to the text as the basis for the answers. (3-PS2-1, 3-PS2-3)
- RI.3.3 Describe the relationship between a series of historical events, scientific ideas or concepts, or steps in technical procedures in a text, using language that pertains to time, sequence, and cause/effect. (3-PS2-3)
- RI.3.8 Describe the logical connection between particular sentences and paragraphs in a text (e.g., comparison, cause/effect, first/second/third in a sequence). (3-PS2-3)

W.3.7 Conduct short research projects that build knowledge about a topic. (3-PS2-1, 3-PS2-2)

W.3.8 Recall information from experiences or gather information from print and digital sources; take brief notes on sources and sort evidence into provided categories. (3-PS2-1, 3-PS2-2)

SL.3.3 Ask and answer questions about information from a speaker, offering appropriate elaboration and detail. (3-PS2-3)

Mathematics –
- MP.2 Reason abstractly and quantitatively. (3-PS2-1)
- MP.5 Use appropriate tools strategically. (3-PS2-1)

3.MD.A.2 Measure and estimate liquid volumes and masses of objects using standard units of grams (g), kilograms (kg), and liters (l). Add, subtract, multiply, or divide to solve one-step word problems involving masses or volumes that are given in the same units, e.g., by using drawings (such as a beaker with a measurement scale) to represent the problem. (3-PS2-1)
Grade Three

Interdependent Relationships in Ecosystems

Students who demonstrate understanding can:

3-LS2-1
Construct an argument that some animals form groups that help members survive.
AR Clarification Statement: Examples could include ant colonies, herds of bison, or hives of bees.

3-LS4-1
Analyze and interpret data from fossils to provide evidence of the organisms and the environments in which they lived long ago.
Clarification Statement: Examples of data could include type, size, and distributions of fossilized organisms. Examples of fossils and environments could include marine fossils found on dry land, tropical plant fossils found in Arctic areas, and fossils of extinct organisms. Assessment does not include identification of specific fossils or living plants and animals. Assessment is limited to major fossil types and relative ages.

3-LS4-3
Construct an argument with evidence that in a particular habitat some organisms can survive well, some survive less well, and some cannot survive at all.
AR Clarification Statement: Examples of evidence could include needs and characteristics of the organisms and habitats involved. The organisms and their habitat make up a system in which the parts depend on each other for survival.

3-LS4-4
Make a claim about the merit of a solution to a problem caused when the environment changes and the types of plants and animals that live there may change.*
Clarification Statement: Examples of environmental changes could include changes in land characteristics, water distribution, temperature, food, and other organisms.
Assessment Boundary: Assessment is limited to a single environmental change. Assessment does not include the greenhouse effect or climate change.

The performance expectations above were developed using the following elements from the NRC document *A Framework for K-12 Science Education:*

Science and Engineering Practices

Analyzing and Interpreting Data

Analyzing data in 3–5 builds on K–2 experiences and progresses to introducing quantitative approaches to collecting data and conducting multiple trials of qualitative observations. When possible and feasible, digital tools should be used.
- Analyze and interpret data to make sense of phenomena using logical reasoning. (3-LS4-1)

Engaging in Argument from Evidence

Engaging in argument from evidence in 3–5 builds on K–2 experiences and progresses to critiquing the scientific explanations or solutions proposed by peers by citing relevant evidence about the natural and designed worlds.
- Construct an argument with evidence, data, and/or a model. (3-LS2-1)
- Construct an argument with evidence. (3-LS4-3)
- Make a claim about the merit of a solution to a problem by citing relevant evidence about how it meets the criteria and constraints of the problem. (3-LS4-4)

Disciplinary Core Ideas

LS2.C: Ecosystem Dynamics, Functioning, and Resilience

- When the environment changes in ways that affect a place's physical characteristics, temperature, or availability of resources, some organisms survive and reproduce, others move to new locations, yet others move into the transformed environment, and some die. (3-LS4-4)

LS2.D: Social Interactions and Group Behavior

- Being part of a group helps animals obtain food, defend themselves, and cope with changes. Groups may serve different functions and vary dramatically in size. (3-LS2-1)

LS4.A: Evidence of Common Ancestry and Diversity

- Some kinds of plants and animals that once lived on Earth are no longer found anywhere. (3-LS4-1)
- Fossils provide evidence about the types of organisms that lived long ago and also about the nature of their environments. (3-LS4-1)

LS4.C: Adaptation

- For any particular environment, some kinds of organisms survive well, some survive less well, and some cannot survive at all. (3-LS4-3)

Crosscutting Concepts

Cause and Effect

- Cause and effect relationships are routinely identified and used to explain change. (3-LS2-1, 3-LS4-3)

Scale, Proportion, and Quantity

- Observable phenomena exist from very short to very long time periods. (3-LS4-1)

Systems and System Models

- A system can be described in terms of its components and their interactions. (3-LS4-4)

Connections to Engineering, Technology, and Applications of Science

Interdependence of Science, Engineering, and Technology

- Knowledge of relevant scientific concepts and research findings is important in engineering. (3-LS4-4)
LS4.D: Biodiversity and Humans
- Populations live in a variety of habitats, and change in those habitats affects the organisms living there. (3-LS4-4)

| Connections to other DCIs in third grade: | 3.ESS2.D (3-LS4-3); 3.ESS3.B (3-LS4-4) |
| Connections to other DCIs across grade levels: | K.ESS3.A (3-LS4-3, 3-LS4-4); K-2.ETS1.A (3-LS4-4); 1.LS1.B (3-LS2-1); 2.LS2.A (3-LS4-3, 3-LS4-4); 2.LS4.D (3-LS4-3, 3-LS4-4); 4.ESS1.C (3-LS4-1); 4.ESS3.B (3-LS4-4); 3-5.ETS1.A (3-LS4-4); 6.ESS3.C (3-LS4-4); 7.LS2.A (3-LS2-1, 3-LS4-1, 3-LS4-3, 3-LS4-4); 7.LS2.C (3-LS4-4); 7.ESS2.B (3-LS4-1); 8.LS4.A (3-LS4-1); 8.LS4.B (3-LS4-3); 8.LS4.C (3-LS4-3, 3-LS4-4); 8.ESS1.C (3-LS4-1, 3-LS4-3, 3-LS4-4) |

Connections to Nature of Science

Scientific Knowledge Assumes an Order and Consistency in Natural Systems
- Science assumes consistent patterns in natural systems. (3-LS4-1)

Common Core State Standards Connections:

ELA/Literacy –
- **RI.3.1** Ask and answer questions to demonstrate understanding of a text, referring explicitly to the text as the basis for the answers. (3-LS2-1, 3-LS4-1, 3-LS4-3, 3-LS4-4)
- **RI.3.2** Determine the main idea of a text; recount the key details and explain how they support the main idea. (3-LS4-1, 3-LS4-3, 3-LS4-4)
- **RI.3.3** Describe the relationship between a series of historical events, scientific ideas or concepts, or steps in technical procedures in a text, using language that pertains to time, sequence, and cause/effect. (3-LS2-1, 3-LS4-1, 3-LS4-3, 3-LS4-4)
- **W.3.1** Write opinion pieces on topics or texts, supporting a point of view with reasons. (3-LS2-1, 3-LS4-1, 3-LS4-3, 3-LS4-4)
- **W.3.2** Write informative/explanatory texts to examine a topic and convey ideas and information clearly. (3-LS2-1, 3-LS4-1, 3-LS4-3, 3-LS4-4)
- **W.3.8** Recall information from experiences or gather information from print and digital sources; take brief notes on sources and sort evidence into provided categories. (3-LS4-1)
- **SL.3.4** Report on a topic or text, tell a story, or recount an experience with appropriate facts and relevant, descriptive details, speaking clearly at an understandable pace. (3-LS4-3, 3-LS4-4)

Mathematics –
- **MP.2** Reason abstractly and quantitatively. (3-LS4-1, 3-LS4-3, 3-LS4-4)
- **MP.4** Model with mathematics. (3-LS2-1, 3-LS4-1, 3-LS4-3, 3-LS4-4)
- **MP.5** Use appropriate tools strategically. (3-LS4-1)
- **3.NBT** Number and Operations in Base Ten (3-LS2-1)
- **3.MD.B.3** Draw a scaled picture graph and a scaled bar graph to represent a data set with several categories. Solve one- and two-step “how many more” and “how many less” problems using information presented in scaled bar graphs. (3-LS4-3)
- **3.MD.B.4** Generate measurement data by measuring lengths using rulers marked with halves and fourths of an inch. Show the data by making a line plot, where the horizontal scale is marked off in appropriate units—whole numbers, halves, or quarters. (3-LS4-1)
Inheritance and Variation of Traits: Life Cycles and Traits

Students who demonstrate understanding can:

3-LS1-1 Develop models to describe that organisms have unique and diverse life cycles but all have in common birth, growth, reproduction, and death. [Clarification Statement: Changes organisms go through during their life form a pattern.] [Assessment Boundary: Assessment of plant life cycles is limited to those of flowering plants. Assessment does not include details of human reproduction.]

3-LS3-1 Analyze and interpret data to provide evidence that plants and animals have traits inherited from parents and that variation of these traits exists in a group of similar organisms. [Clarification Statement: Patterns are the similarities and differences in traits shared between offspring and their parents, or among siblings. Emphasis is on organisms other than humans.] [Assessment Boundary: Assessment does not include genetic mechanisms of inheritance and prediction of traits. Assessment is limited to non-human examples.]

3-LS3-2 Use evidence to support the explanation that traits can be influenced by the environment. [Clarification Statement: Examples of the environment affecting a trait could include insufficient water stunting normally tall plants; and, a pet dog becoming overweight that is given too much food and too little exercise.]

3-LS4-2 Use evidence to construct an explanation for how the variations in characteristics among individuals of the same species may provide advantages in surviving, finding mates, and reproducing. [AR Clarification Statement: Examples of cause and effect relationships could be plants of the same species with larger thorns may be less likely to be eaten; and, animals of the same species with more effective camouflage or coloration may be more likely to survive and produce offspring.]

The performance expectations above were developed using the following elements from the NRC document A Framework for K-12 Science Education:

Science and Engineering Practices

Developing and Using Models
Modeling in 3–5 builds on K–2 experiences and progresses to building and revising simple models and using models to represent events and design solutions.

- Develop models to describe phenomena. (3-LS1-1)

Analyzing and Interpreting Data
Analyzing data in 3–5 builds on K–2 experiences and progresses to introducing quantitative approaches to collecting data and conducting multiple trials of qualitative observations. When possible and feasible, digital tools should be used.

- Analyze and interpret data to make sense of phenomena using logical reasoning. (3-LS3-1)

Constructing Explanations and Designing Solutions
Constructing explanations and designing solutions in 3–5 builds on K–2 experiences and progresses to the use of evidence in constructing explanations that specify variables that describe and predict phenomena and in designing multiple solutions to design problems.

- Use evidence (e.g., observations, patterns) to support an explanation. (3-LS3-2)

- Use evidence (e.g., observations, patterns) to construct an explanation. (3-LS4-2)

Disciplinary Core Ideas

LS1.B: Growth and Development of Organisms
- Reproduction is essential to the continued existence of every kind of organism. Plants and animals have unique and diverse life cycles. (3-LS1-1)

LS3.A: Inheritance of Traits
- Many characteristics of organisms are inherited from their parents. (3-LS3-1)
- Other characteristics result from individuals’ interactions with the environment, which can range from diet to learning. Many characteristics involve both inheritance and environment. (3-LS3-2)

LS3.B: Variation of Traits
- Different organisms vary in how they look and function because they have different inherited information. (3-LS3-1)
- The environment also affects the traits that an organism develops. (3-LS3-2)

LS4.B: Natural Selection
- Sometimes the differences in characteristics between individuals of the same species provide advantages in surviving, finding mates, and reproducing. (3-LS4-2)

Crosscutting Concepts

Patterns
- Similarities and differences in patterns can be used to sort and classify natural phenomena. (3-LS3-1)
- Patterns of change can be used to make predictions. (3-LS1-1)

Cause and Effect
- Cause and effect relationships are routinely identified and used to explain change. (3-LS3-2, 3-LS4-2)
Connections to Nature of Science

Scientific Knowledge is Based on Empirical Evidence
- Science findings are based on recognizing patterns. (3-LS1-1)

Connections to other DCIs in third grade:
- **3.LS4.C** (3-LS4-2)

Connections to other DCIs across grade levels:
- **1.LS3.A** (3-LS3-1, 3-LS4-2); **1.LS3.B** (3-LS3-1); **6.LS1.B** (3-LS1-1, 3-LS3-2); **6.LS3.B** (3-LS3-1, 3-LS4-2); **7.LS2.A** (3-LS4-2); **8.LS3.A** (3-LS3-1); **8.LS4.B** (3-LS4-2)

Common Core State Standards Connections:

ELA/Literacy
- **RI.3.1** Ask and answer questions to demonstrate understanding of a text, referring explicitly to the text as the basis for the answers. (3-LS3-1, 3-LS3-2, 3-LS4-2)
- **RI.3.2** Determine the main idea of a text; recount the key details and explain how they support the main idea. (3-LS3-1, 3-LS3-2, 3-LS4-2)
- **RI.3.3** Describe the relationship between a series of historical events, scientific ideas or concepts, or steps in technical procedures in a text, using language that pertains to time, sequence, and cause/effect. (3-LS3-1, 3-LS3-2, 3-LS4-2)
- **RI.3.7** Use information gained from illustrations (e.g., maps, photographs) and the words in a text to demonstrate understanding of the text (e.g., where, when, why, and how key events occur). (3-LS1-1)
- **W.3.2** Write informative/explanatory texts to examine a topic and convey ideas and information clearly. (3-LS3-1, 3-LS3-2, 3-LS4-2)
- **SL.3.4** Report on a topic or text, tell a story, or recount an experience with appropriate facts and relevant, descriptive details, speaking clearly at an understandable pace. (3-LS3-1, 3-LS3-2, 3-LS4-2)
- **SL.3.5** Create engaging audio recordings of stories or poems that demonstrate fluid reading at an understandable pace; add visual displays when appropriate to emphasize or enhance certain facts or details. (3-LS1-1)

Mathematics
- **MP.2** Reason abstractly and quantitatively. (3-LS3-1, 3-LS3-2, 3-LS4-2)
- **MP.4** Model with mathematics. (3-LS1-1, 3-LS3-1, 3-LS3-2, 3-LS4-2)
- **3.NBT** Number and Operations in Base Ten (3-LS1-1)
- **3.NF** Number and Operations—Fractions (3-LS1-1)
- **3.MD.B.3** Draw a scaled picture graph and a scaled bar graph to represent a data set with several categories. Solve one- and two-step “how many more” and “how many less” problems using information presented in scaled bar graphs. (3-LS4-2)
- **3.MD.B.4** Generate measurement data by measuring lengths using rulers marked with halves and quarters of an inch. Show the data by making a line plot, where the horizontal scale is marked off in appropriate units—whole numbers, halves, or quarters. (3-LS3-1, 3-LS3-2)
Weather and Climate

Students who demonstrate understanding can:

3-ESS2-1 Represent data in tables and graphical displays to describe typical weather conditions expected during a particular season.

Clarification Statement: Examples of data could include average temperature, precipitation, and wind direction.
Assessment Boundary: Assessment of graphical displays is limited to pictographs and bar graphs. Assessment does not include climate change.

3-ESS2-2 Obtain and combine information to describe climates in different regions of the world.

3-ESS3-1 Make a claim about the merit of a design solution that reduces the impacts of a weather-related hazard.*

Clarification Statement: Examples of design solutions to weather-related hazards could include barriers to prevent flooding, wind resistant roofs, and lightning rods.

The performance expectations above were developed using the following elements from the NRC document: *A Framework for K-12 Science Education:*

Science and Engineering Practices

Analyzing and Interpreting Data
Analyzing data in 3–5 builds on K–2 experiences and progresses to introducing quantitative approaches to collecting data and conducting multiple trials of qualitative observations. When possible and feasible, digital tools should be used.

- Represent data in tables and various graphical displays (bar graphs and pictographs) to reveal patterns that indicate relationships. (3-ESS2-1)

Engaging in Argument from Evidence
Engaging in argument from evidence in 3–5 builds on K–2 experiences and progresses to critiquing the scientific explanations or solutions proposed by peers by citing relevant evidence about the natural and designed world(s).

- Make a claim about the merit of a solution to a problem by citing relevant evidence about how it meets the criteria and constraints of the problem. (3-ESS3-1)

Disciplinary Core Ideas

ESS2.D: Weather and Climate
- Scientists record patterns of the weather across different times and areas so that they can make predictions about what kind of weather might happen next. (3-ESS2-1)
- Climate describes a range of an area’s typical weather conditions and the extent to which those conditions vary over years. (3-ESS2-2)

ESS3.B: Natural Hazards
- A variety of natural hazards result from natural processes. Humans cannot eliminate natural hazards but can take steps to reduce their impacts. (3-ESS3-1)

Crosscutting Concepts

Patterns
- Patterns of change can be used to make predictions. (3-ESS2-1, 3-ESS2-2)

Cause and Effect
- Cause and effect relationships are routinely identified, tested, and used to explain change. (3-ESS3-1)

Connections to Engineering, Technology, and Applications of Science

Influence of Engineering, Technology, and Science on Society and the Natural World
- Engineers improve existing technologies or develop new ones to increase their benefits (e.g., better artificial limbs), decrease known risks (e.g., seatbelts in cars), and meet societal demands (e.g., cell phones). (3-ESS3-1)

Connections to Nature of Science

Science is a Human Endeavor
- Science affects everyday life. (3-ESS3-1)

Connections to other DCIs in third grade: N/A

Connections to other DCIs across grade levels:
- K.ESS2.D (3-ESS2-1); K.ESS3.B (3-ESS3-1); K-2.ETS1.A (3-ESS3-1);
- 4.ESS2.A (3-ESS2-1); 4.ESS3.B (3-ESS3-1); 3-5.ETS1.A (3-ESS3-1); 5.ESS2.A (3-ESS2-1); 6.ESS2.D (3-ESS2-1, 3-ESS2-2);
- 7.ESS2.C (3-ESS2-1, 3-ESS2-2); 7.ESS3.B (3-ESS3-1)
Common Core State Standards Connections:

ELA/Literacy –
RI.3.1 Ask and answer questions to demonstrate understanding of a text, referring explicitly to the text as the basis for the answers. (3-ESS2-2)
RI.3.9 Compare and contrast the most important points and key details presented in two texts on the same topic. (3-ESS2-2)
W.3.1 Write opinion pieces on topics or texts, supporting a point of view with reasons. (3-ESS3-1)
W.3.7 Conduct short research projects that build knowledge about a topic. (3-ESS3-1)
W.3.8 Recall information from experiences or gather information from print and digital sources; take brief notes on sources and sort evidence into provided categories. (3-ESS2-2)

Mathematics –
MP.2 Reason abstractly and quantitatively. (3-ESS2-1, 3-ESS2-2, 3-ESS3-1)
MP.4 Model with mathematics. (3-ESS2-1, 3-ESS2-2, 3-ESS3-1)
MP.5 Use appropriate tools strategically. (3-ESS2-1)
3.MD.A.2 Measure and estimate liquid volumes and masses of objects using standard units of grams (g), kilograms (kg), and liters (l). Add, subtract, multiply, or divide to solve one-step word problems involving masses or volumes that are given in the same units, e.g., by using drawings (such as a beaker with a measurement scale) to represent the problem. (3-ESS2-1)
3.MD.B.3 Draw a scaled picture graph and a scaled bar graph to represent a data set with several categories. Solve one- and two-step “how many more” and “how many less” problems using information presented in bar graphs. (3-ESS2-1)
Grade Three

Engineering, Technology, and Applications of Science

Students who demonstrate understanding can:

3-ETS1-1 Define a simple design problem reflecting a need or a want that includes specified criteria for success and constraints on materials, time, or cost.

3-ETS1-2 Generate and compare multiple possible solutions to a problem based on how well each is likely to meet the criteria and constraints of the problem.

3-ETS1-3 Plan and carry out fair tests in which variables are controlled and failure points are considered to identify aspects of a model or prototype that can be improved.

The performance expectations above were developed using the following elements from the NRC document *A Framework for K-12 Science Education*:

<table>
<thead>
<tr>
<th>Science and Engineering Practices</th>
<th>Disciplinary Core Ideas</th>
<th>Crosscutting Concepts</th>
</tr>
</thead>
<tbody>
<tr>
<td>Asking Questions and Defining Problems</td>
<td>ETS1.A: Defining and Delimiting Engineering Problems</td>
<td>Influence of Science, Engineering, and Technology on Society and the Natural World</td>
</tr>
<tr>
<td>Asking questions and defining problems in 3–5 builds on grades K–2 experiences and progresses to specifying qualitative relationships.</td>
<td>• Possible solutions to a problem are limited by available materials and resources (constraints). The success of a designed solution is determined by considering the desired features of a solution (criteria). Different proposals for solutions can be compared on the basis of how well each one meets the specified criteria for success or how well each takes the constraints into account. (3-ETS1-1)</td>
<td>• People’s needs and wants change over time, as do their demands for new and improved technologies. (3-ETS1-1)</td>
</tr>
<tr>
<td>• Define a simple design problem that can be solved through the development of an object, tool, process, or system and includes several criteria for success and constraints on materials, time, or cost.</td>
<td>ETS1.B: Developing Possible Solutions</td>
<td>• Engineers improve existing technologies or develop new ones to increase their benefits, decrease known risks, and meet societal demands. (3-ETS1-2)</td>
</tr>
<tr>
<td>Planning and Carrying Out Investigations</td>
<td>• Research on a problem should be carried out before beginning to design a solution. Testing a solution involves investigating how well it performs under a range of likely conditions. (3-ETS1-2)</td>
<td></td>
</tr>
<tr>
<td>Planning and carrying out investigations to answer questions or test solutions to problems in 3–5 builds on K–2 experiences and progresses to include investigations that control variables and provide evidence to support explanations or design solutions.</td>
<td>• At whatever stage, communicating with peers about proposed solutions is an important part of the design process, and shared ideas can lead to improved designs. (3-ETS1-2)</td>
<td></td>
</tr>
<tr>
<td>• Plan and conduct an investigation collaboratively to produce data to serve as the basis for evidence, using fair tests in which variables are controlled and the number of trials considered. (3-ETS1-3)</td>
<td>• Tests are often designed to identify failure points or difficulties, which suggest the elements of the design that need to be improved. (3-ETS1-3)</td>
<td></td>
</tr>
<tr>
<td>Constructing Explanations and Designing Solutions</td>
<td>ETS1.C: Optimizing the Design Solution</td>
<td></td>
</tr>
<tr>
<td>Constructing explanations and designing solutions in 3–5 builds on K–2 experiences and progresses to the use of evidence in constructing explanations that specify variables that describe and predict phenomena and in designing multiple solutions to design problems.</td>
<td>• Different solutions need to be tested in order to determine which of them best solves the problem, given the criteria and the constraints. (3-ETS1-3)</td>
<td></td>
</tr>
<tr>
<td>• Generate and compare multiple solutions to a problem based on how well they meet the criteria and constraints of the design problem. (3-ETS1-2)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Connections to 3-5-ETS1.A: Defining and Delimiting Engineering Problems include: **Fourth Grade**: (4-PS3-4)

Connections to 3-5-ETS1.B: Designing Solutions to Engineering Problems include: **Fourth Grade**: (4-ESS3-2)

Connections to 3-5-ETS1.C: Optimizing the Design Solution include: **Fourth Grade**: (4-PS4-3)

Connections to other DCIs across grade levels:
- **K-2.ETS1.A** (3-ETS1-1, 3-ETS1-2, 3-ETS1-3); **K-2.ETS1.B** (3-ETS1-2); **K-2.ETS1.C** (3-ETS1-2, 3-ETS1-3); **6-8.ETS1.A** (3-ETS1-1); **6-8.ETS1.B** (3-ETS1-1, 3-ETS1-2, 3-ETS1-3); **6-8.ETS1.C** (3-ETS1-2, 3-ETS1-3)

Common Core State Standards Connections:

ELA/Literacy –
- **RI.3.1** Ask and answer questions to demonstrate understanding of a text, referring explicitly to the text as the basis for the answers. (3-ETS1-2)
- **RI.3.7** Use information gained from illustrations (e.g., maps, photographs) and the words in a text to demonstrate understanding of the text (e.g., where, when, why, and how key events occur). (3-ETS1-2)
- **RI.3.9** Compare and contrast the most important points and key details presented in two texts on the same topic. (3-ETS1-2)

W.3.7 Conduct short research projects that build knowledge about a topic. (3-ETS1-1, 3-ETS1-3)

W.3.8 Recall information from experiences or gather information from print and digital sources; take brief notes on sources and sort evidence into provided categories. (3-ETS1-1, 3-ETS1-3)

Mathematics –
- **MP.2** Reason abstractly and quantitatively. (3-ETS1-1, 3-ETS1-2, 3-ETS1-3)
- **MP.4** Model with mathematics. (3-ETS1-1, 3-ETS1-2, 3-ETS1-3)
- **MP.5** Use appropriate tools strategically. (3-ETS1-1, 3-ETS1-2, 3-ETS1-3)
- **3-5.OA** Operations and Algebraic Thinking (3-ETS1-1, 3-ETS1-2)
Structure, Function, and Information Processing

Students who demonstrate understanding can:

4-PS4-2 Develop a model to describe that light reflecting from objects and entering the eye allows objects to be seen.
[Assessment Boundary: Assessment does not include knowledge of specific colors reflected or seen, the cellular mechanisms of vision, or how the retina works.]

4-LS1-1 Construct an argument that plants and animals have internal and external structures that function to support survival, growth, behavior, and reproduction.
[AR Clarification Statement: Examples of structures for survival could include thorns and teeth. Examples of structures for growth could include stems and the skeleton. Examples of structures for behavior could include roots and the brain. Examples of reproduction could include pistils, stamens, and eggs.]
[Assessment Boundary: Assessment is limited to macroscopic structures within plant and animal systems.]

4-LS1-2 Use a model to describe that animals receive different types of information through their senses, process the information in their brain, and respond to the information in different ways.
[Clarification Statement: Emphasis is on systems of information transfer. Use of models could include diagrams, computer simulations, and physical models.]
[Assessment Boundary: Assessment does not include the mechanisms by which the brain stores and recalls information or the mechanisms of how sensory receptors function.]

The performance expectations above were developed using the following elements from the NRC document *A Framework for K-12 Science Education*:

Science and Engineering Practices

Developing and Using Models
- Modeling in 3–5 builds on K–2 experiences and progresses to building and revising simple models and using models to represent events and design solutions.
 - Develop a model to describe phenomena. (4-PS4-2)
 - Use a model to test interactions concerning the functioning of a natural system. (4-LS1-2)

Engaging in Argument from Evidence
- Engaging in argument from evidence in 3–5 builds on K–2 experiences and progresses to critiquing the scientific explanations or solutions proposed by peers by citing relevant evidence about the natural and designed world(s).
 - Construct an argument with evidence, data, and/or a model. (4-LS1-1)

Disciplinary Core Ideas

PS4.B: Electromagnetic Radiation
- An object can be seen when light reflected from its surface enters the eyes. (4-PS4-2)

LS1.A: Structure and Function
- Plants and animals have both internal and external structures that serve various functions in growth, survival, behavior, and reproduction. (4-LS1-1)

LS1.D: Information Processing
- Different sense receptors are specialized for particular kinds of information, which may be then processed by the animal’s brain. Animals are able to use their perceptions and memories to guide their actions. (4-LS1-2)

Crosscutting Concepts

Cause and Effect
- Cause and effect relationships are routinely identified. (4-PS4-2)

Systems and System Models
- A system can be described in terms of its components and their interactions. (4-LS1-1, 4-LS1-2)

Connections to other DCIs in fourth grade: N/A

Connections to other DCIs across grade levels:

1. **PS4.B** (4-PS4-2); **LS1.A** (4-LS1-1); **LS1.D** (4-LS1-2); **LS3.B** (4-LS1-1); **LS1.A** (4-LS1-1, 4-LS1-2); **LS1.D** (4-PS4-2, 4-LS1-2); **PS4.B** (4-PS4-2)

Common Core State Standards Connections:

ELA/Literacy –

- W.4.1 Write opinion pieces on topics or texts, supporting a point of view with reasons and information. (4-LS1-1)

SL.4.5 Add audio recordings and visual displays to presentations when appropriate to enhance the development of main ideas or themes. (4-PS4-2, 4-LS1-2)

Mathematics –

- MP.4 Model with mathematics. (4-PS4-2)

- 4.G.A.1 Draw points, lines, line segments, rays, angles (right, acute, obtuse), and perpendicular and parallel lines. Identify these in two-dimensional figures. (4-PS4-2)

- 4.G.A.3 Recognize a line of symmetry for a two-dimensional figure as a line across the figure such that the figure can be folded across the line into matching parts. Identify line-symmetric figures and draw lines of symmetry. (4-LS1-1)
Science and Engineering Practices

Developing and Using Models
Modeling in 3–5 builds on K–2 experiences and progresses to building and revising simple models and using models to represent events and design solutions.

- Develop a model using an analogy, example, or abstract representation to describe a scientific principle. (4-PS4-1)

Constructing Explanations and Designing Solutions
Constructing explanations and designing solutions in 3–5 builds on K–2 experiences and progresses to the use of evidence in constructing explanations that specify variables that describe and predict phenomena and in designing multiple solutions to design problems.

- Generate and compare multiple solutions to a problem based on how well they meet the criteria and constraints of the design solution. (4-PS4-3)

Crosscutting Concepts

Patterns
- Similarities and differences in patterns can be used to sort and classify natural phenomena. (4-PS4-1)
- Similarities and differences in patterns can be used to sort and classify designed products. (4-PS4-3)

Connections to Nature of Science

Scientific Knowledge is Based on Empirical Evidence
Science findings are based on recognizing patterns. (4-PS4-1)

Disciplinary Core Ideas

PS4.A: Wave Properties
- Waves, which are regular patterns of motion, can be made in water by disturbing the surface. When waves move across the surface of deep water, the water goes up and down in place; there is no net motion in the direction of the wave except when the water meets a beach. (4-PS4-1)
- Waves of the same type can differ in amplitude (height of the wave) and wavelength (spacing between wave peaks). (4-PS4-1)

PS4.C: Information Technologies and Instrumentation
- Digitized information can be transmitted over long distances without significant degradation. High-tech devices, such as computers or cell phones, can receive and decode information—convert it from digitized form to voice—and vice versa. (4-PS4-3)

ETS1.C: Optimizing The Design Solution
- Different solutions need to be tested in order to determine which of them best solves the problem, given the criteria and the constraints. (4-PS4-3)

Connections to other DCIs in fourth grade:
4.PS3.A (4-PS4-1); 4.PS3.B (4-PS4-1); 4.ETS1.A (4-PS4-3)

Connections to other DCIs across grade levels:
K-2.ETS1.A (4-PS4-3); 1.PS4.C (4-PS4-3); K-2.ETS1.B (4-PS4-3); K-2.ETS1.C (4-PS4-3); 3.PS2.A (4-PS4-3); 6-8.ETS1.B (4-PS4-3); 8.PS4.A (4-PS4-1); 8.PS4.C (4-PS4-3)
Common Core State Standards Connections:

ELA/Literacy –

RI.4.1 Refer to details and examples in a text when explaining what the text says explicitly and when drawing inferences from the text. (4-PS4-3)

RI.4.9 Integrate information from two texts on the same topic in order to write or speak about the subject knowledgeably. (4-PS4-3)

SL.4.5 Add audio recordings and visual displays to presentations when appropriate to enhance the development of main ideas or themes. (4-PS4-1)

Mathematics –

MP.4 Model with mathematics. (4-PS4-1)

4.G.A.1 Draw points, lines, line segments, rays, angles (right, acute, obtuse), and perpendicular and parallel lines. Identify these in two-dimensional figures. (4-PS4-1)
GRADE FOUR

<table>
<thead>
<tr>
<th>Science and Engineering Practices</th>
<th>Disciplinary Core Ideas</th>
<th>Crosscutting Concepts</th>
</tr>
</thead>
<tbody>
<tr>
<td>Energy</td>
<td>PS3.A: Definitions of Energy</td>
<td>Cause and Effect</td>
</tr>
<tr>
<td>Students who demonstrate understanding can:</td>
<td>- The faster a given object is moving, the more energy it possesses. (4-PS3-1)</td>
<td>- Cause and effect relationships are routinely identified and used to explain change. (4-ESS3-1)</td>
</tr>
<tr>
<td>4-PS3-1 Use evidence to construct an explanation relating the speed of an object to the energy of that object.</td>
<td>- Energy can be moved from place to place by moving objects or through sound, light, or electric currents. (4-PS3-2, 4-PS3-3)</td>
<td>Energy and Matter</td>
</tr>
<tr>
<td>[Assessment Boundary: Assessment does not include quantitative measures of changes in the speed of an object or on any precise or quantitative definition of energy.]</td>
<td>PS3.B: Conservation of Energy and Energy Transfer</td>
<td>- Energy can be transferred in various ways and between objects. (4-PS3-1, 4-PS3-2, 4-PS3-3, 4-PS3-4)</td>
</tr>
<tr>
<td>4-PS3-2 Make observations to provide evidence that energy can be transferred from place to place by sound, light, heat, and electric currents.</td>
<td>- Energy is present whenever there are moving objects, sound, light, or heat. When objects collide, energy can be transferred from one object to another, thereby changing their motion. In such collisions, some energy is typically also transferred to the surrounding air; as a result, the air gets heated and sound is produced. (4-PS3-2, 4-PS3-3)</td>
<td>Connections to Engineering, Technology, and Applications of Science</td>
</tr>
<tr>
<td>[Assessment Boundary: Assessment does not include quantitative measurements of energy.]</td>
<td>- Light also transfers energy from place to place. (4-PS3-2)</td>
<td>Interdependence of Science, Engineering, and Technology</td>
</tr>
<tr>
<td>4-PS3-3 Ask questions and predict outcomes about the changes in energy that occur when objects collide.</td>
<td>- Energy can also be transferred from place to place by electric currents, which can then be used locally to produce motion, sound, heat, or light. The currents may have been produced to begin with by transforming the energy of motion into electrical energy. (4-PS3-2, 4-PS3-4)</td>
<td>- Knowledge of relevant scientific concepts and research findings is important in engineering. (4-ESS3-1)</td>
</tr>
<tr>
<td>[Clarification Statement: Emphasis is on the change in the energy due to the change in speed, not on the forces, as objects interact. [Assessment Boundary: Assessment does not include quantitative measurements of energy.]</td>
<td>4-ESS3-1 Obtain and combine information to describe that energy and fuels are derived from natural resources and their uses affect the environment.</td>
<td>Influence of Engineering, Technology, and Science on Society and the Natural World</td>
</tr>
<tr>
<td>4-PS3-4 Apply scientific ideas to design, test, and refine a device that converts energy from one form to another.*</td>
<td>[Clarification Statement: Examples of devices could include electric circuits that convert electrical energy into motion, light, or sound energy; or, a passive solar heater that converts light into heat. Examples of constraints could include the materials, cost, and time to design the device.] [Assessment Boundary: Devices should be limited to those that convert motion energy to electric energy or use stored energy to cause motion or produce light or sound.]</td>
<td>- Over time, people’s needs and wants change, as do their demands for new and improved technologies. (4-ESS3-1)</td>
</tr>
<tr>
<td>4-EPS3-1 Obtain and combine information to describe that energy and fuels are derived from natural resources and their uses affect the environment.</td>
<td>The performance expectations above were developed using the following elements from the NRC document A Framework for K-12 Science Education:</td>
<td>- Engineers improve existing technologies or develop new ones. (4-PS3-4)</td>
</tr>
</tbody>
</table>

Arkansas K-12 Science Standards
Arkansas Department of Education
2015
Constructing Explanations and Designing Solutions

Constructing explanations and designing solutions in 3–5 builds on K–2 experiences and progresses to the use of evidence in constructing explanations that specify variables that describe and predict phenomena and in designing multiple solutions to design problems.

- Use evidence (e.g., measurements, observations, patterns) to construct an explanation. (4-PS3-1)
- Apply scientific ideas to solve design problems. (4-PS3-4)

Obtaining, Evaluating, and Communicating Information

Obtaining, evaluating, and communicating information in 3–5 builds on K–2 experiences and progresses to evaluate the merit and accuracy of ideas and methods.

- Obtain and combine information from books and other reliable media to explain phenomena. (4-ESS3-1)

Connections to other DCIs in fourth grade:

N/A

Connections to other DCIs across grade levels:

- K.PS2.B (4-PS3-3); K-2.ETS1.A (4-PS3-4); K-2.ETS1.B (4-PS3-4);
- 3.PS2.A (4-PS3-3); 5.PS3.D (4-PS3-4); 5.LS1.C (4-PS3-1); 5.ESS3.C (4-ESS3-1); 8.PS2.A (4-PS3-3); 8.PS2.B (4-PS3-2);
- 8.PS3.A (4-PS3-1, 4-PS3-2, 4-PS3-3, 4-PS3-4); 8.PS3.B (4-PS3-2, 4-PS3-3, 4-PS3-4); 6.PS3.C (4-PS3-3);
- 6.PS3.D (4-ESS3-1); 6.ESS3.C (4-ESS3-1); 6.ESS3.D (4-ESS3-1); 6-8.ETS1.B (4-PS3-4); 6-8.ETS1.C (4-PS3-4);
- 7.ESS2.A (4-ESS3-1); 7.ESS3.A (4-ESS3-1); 8.PS4.B (4-PS3-2)

Common Core State Standards Connections:

- RI.4.1 Refer to details and examples in a text when explaining what the text says explicitly and when drawing inferences from the text. (4-PS3-1)
- RI.4.3 Explain events, procedures, ideas, or concepts in a historical, scientific, or technical text, including what happened and why, based on specific information in the text. (4-PS3-1)
- RI.4.4 Integrate information from two texts on the same topic in order to write or speak about the subject knowledgeably. (4-PS3-1)
- W.4.2 Write informative/explanatory texts to examine a topic and convey ideas and information clearly. (4-PS3-1)
- W.4.4 Conduct short research projects that build knowledge through investigation of different aspects of a topic. (4-PS3-2, 4-PS3-3, 4-PS3-4, 4-ESS3-1)
- W.4.8 Recall relevant information from experiences or gather relevant information from print and digital sources; take notes and categorize information, and provide a list of sources. (4-PS3-1, 4-PS3-2, 4-PS3-3, 4-PS3-4, 4-ESS3-1)
- W.4.9 Draw evidence from literary or informational texts to support analysis, reflection, and research. (4-PS3-1, 4-ESS3-1)
<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>MP.2</td>
<td>Reason abstractly and quantitatively. (4-ESS3-1)</td>
</tr>
<tr>
<td>MP.4</td>
<td>Model with mathematics. (4-ESS3-1)</td>
</tr>
<tr>
<td>4.OA.A.1</td>
<td>Interpret a multiplication equation as a comparison, e.g., interpret $35 = 5 \times 7$ as a statement that 35 is 5 times as many as 7 and 7 times as many as 5. Represent verbal statements of multiplicative comparisons as multiplication equations. (4-ESS3-1)</td>
</tr>
<tr>
<td>4.OA.A.3</td>
<td>Solve multistep word problems posed with whole numbers and having whole-number answers using the four operations, including problems in which remainders must be interpreted. Represent these problems using equations with a letter standing for the unknown quantity. Assess the reasonableness of answers using mental computation and estimation strategies including rounding. (4-PS3-4)</td>
</tr>
</tbody>
</table>
Earth’s Systems: Processes that Shape the Earth

Students who demonstrate understanding can:

4-ESS1-1 Identify evidence from patterns in rock formations and fossils in rock layers to support an explanation for changes in a landscape over time.
Clarification Statement: Examples of evidence from patterns could include rock layers with marine shell fossils above rock layers with plant fossils and no shells, indicating a change from land to water over time; and, a canyon with different rock layers in the walls and a river in the bottom, indicating that over time a river cut through the rock.
Assessment Boundary: Assessment does not include specific knowledge of the mechanism of rock formation or memorization of specific rock formations and layers. Assessment is limited to relative time.

4-ESS2-1 Make observations and/or measurements to provide evidence of the effects of weathering or the rate of erosion by water, ice, wind, or vegetation.
Clarification Statement: Examples of variables to test could include angle of slope in the downhill movement of water, amount of vegetation, speed of wind, relative rate of deposition, cycles of freezing and thawing of water, cycles of heating and cooling, or volume of water flow.
Assessment Boundary: Assessment is limited to a single form of weathering or erosion.

4-ESS2-2 Analyze and interpret data from maps to describe patterns of Earth’s features.
Clarification Statement: Maps can include topographic maps of Earth’s land and ocean floor, as well as maps of the locations of mountains, continental boundaries, volcanoes, and earthquakes.

4-ESS3-2 Generate and compare multiple solutions to reduce the impacts of natural Earth processes on humans.*
Clarification Statement: Examples of solutions could include designing an earthquake resistant building or improving monitoring of volcanic activity.
Assessment Boundary: Assessment is limited to earthquakes, floods, tsunamis, and volcanic eruptions.

The performance expectations above were developed using the following elements from the NRC document *A Framework for K-12 Science Education*:

<table>
<thead>
<tr>
<th>Science and Engineering Practices</th>
<th>Disciplinary Core Ideas</th>
<th>Crosscutting Concepts</th>
</tr>
</thead>
</table>
| Planning and Carrying Out Investigations | **ESS1.C: The History of Planet Earth**
- Local, regional, and global patterns of rock formations reveal changes over time due to earth forces, such as earthquakes. The presence and location of certain fossil types indicate the order in which rock layers were formed. (4-ESS1-1)
ESS2.A: Earth Materials and Systems
- Rainfall helps to shape the land and affects the types of living things found in a region. Water, ice, wind, living organisms, and gravity break rocks, soils, and sediments into smaller particles and move them around. (4-ESS2-1)
ESS2.B: Plate Tectonics and Large-Scale System Interactions
- The locations of mountain ranges, deep ocean trenches, ocean floor structures, earthquakes, and volcanoes occur in patterns. Most earthquakes and volcanoes occur in bands that are often along the boundaries between continents and oceans. Major mountain chains form inside continents or near their edges. Maps can help locate the different land and water features areas of Earth. (4-ESS2-2)
ESS2.E: Biogeology
- Living things affect the physical characteristics of their regions. (4-ESS2-1) | Patterns
- Patterns can be used as evidence to support an explanation.
(4-ESS1-1, 4-ESS2-2)
Cause and Effect
- Cause and effect relationships are routinely identified, tested, and used to explain change.
(4-ESS2-1, 4-ESS3-2) |
| Analyzing and Interpreting Data | Connections to Engineering, Technology, and Applications of Science
- Engineers improve existing technologies or develop new ones to increase their benefits, to decrease known risks, and to meet societal demands. (4-ESS3-2) | |
Constructing Explanations and Designing Solutions

Constructing explanations and designing solutions in 3–5 builds on K–2 experiences and progresses to the use of evidence in constructing explanations that specify variables that describe and predict phenomena and in designing multiple solutions to design problems.

- Identify the evidence that supports particular points in an explanation. (4-ESS1-1)
- Generate and compare multiple solutions to a problem based on how well they meet the criteria and constraints of the design solution. (4-ESS3-2)

ESS3.B: Natural Hazards

- A variety of hazards result from natural processes (e.g., earthquakes, tsunamis, volcanic eruptions). Humans cannot eliminate the hazards but can take steps to reduce their impacts. (4-ESS3-2)

ETS1.B: Designing Solutions to Engineering Problems

- Testing a solution involves investigating how well it performs under a range of likely conditions.

Connections to Nature of Science

Scientific Knowledge Assumes an Order and Consistency in Natural Systems

- Science assumes consistent patterns in natural systems. (4-ESS1-1)

Connections to other DCIs in fourth grade: 4.ETS1.C (4-ESS3-2)

Connections to other DCIs across grade levels: K-2.ETS1.A (4-ESS3-2); 2.ESS1.C (4-ESS1-1, 4-ESS2-1); 2.ESS2.A (4-ESS2-1); 2.ESS2.B (4-ESS2-2); 2.ESS2.C (4-ESS2-2); K-2.ETS1.B (4-ESS3-2); K-2.ETS1.C (4-ESS3-2); 3.LS4.A (4-ESS1-1); 5.ESS2.A (4-ESS2-1); 5.ESS2.C (4-ESS2-2); 6.ETS1.B (4-ESS3-2); 7.ESS2.A (4-ESS1-1, 4-ESS2-2, 4-ESS3-2); 7.ESS2.B (4-ESS1-1, 4-ESS2-2); 7.ESS3.B (4-ESS3-2); 8.LS4.A (4-ESS1-1); 8.ESS1.C (4-ESS1-1, 4-ESS2-2)

Common Core State Standards Connections:

ELA/Literacy –

- **RI.4.1** Refer to details and examples in a text when explaining what the text says explicitly and when drawing inferences from the text. (4-ESS3-2)
- **RI.4.7** Interpret information presented visually, orally, or quantitatively (e.g., in charts, graphs, diagrams, time lines, animations, or interactive elements on Web pages) and explain how the information contributes to an understanding of the text in which it appears. (4-ESS2-2)
- **RI.4.9** Integrate information from two texts on the same topic in order to write or speak about the subject knowledgeably. (4-ESS3-2)
- **W.4.7** Conduct short research projects that build knowledge through investigation of different aspects of a topic. (4-ESS1-1, 4-ESS2-1)
- **W.4.8** Recall relevant information from experiences or gather relevant information from print and digital sources; take notes and categorize information, and provide a list of sources. (4-ESS1-1, 4-ESS2-1)
- **W.4.9** Draw evidence from literary or informational texts to support analysis, reflection, and research. (4-ESS1-1)

Mathematics –

- **MP.2** Reason abstractly and quantitatively. (4-ESS1-1, 4-ESS2-1, 4-ESS3-2)
- **MP.4** Model with mathematics. (4-ESS1-1, 4-ESS2-1, 4-ESS3-2)
- **MP.5** Use appropriate tools strategically. (4-ESS2-1)

- **4.MD.A.1** Know relative sizes of measurement units within one system of units including km, m, cm; kg, g; lb, oz.; l, ml; hr, min, sec. Within a single system of measurement, express measurements in a larger unit in terms of a smaller unit. Record measurement equivalents in a two-column table. (4-ESS1-1, 4-ESS2-1)

- **4.MD.A.2** Use the four operations to solve word problems involving distances, intervals of time, liquid volumes, masses of objects, and money, including problems involving simple fractions or decimals, and problems that require expressing measurements given in a larger unit in terms of a smaller unit. Represent measurement quantities using diagrams such as number line diagrams that feature a measurement scale. (4-ESS2-1, 4-ESS2-2)

- **4.OA.A.1** Interpret a multiplication equation as a comparison, e.g., interpret 35 = 5 × 7 as a statement that 35 is 5 times as many as 7 and 7 times as many as 5. Represent verbal statements of multiplicative comparisons as multiplication equations. (4-ESS3-2)
Science and Engineering Practices

Asking Questions and Defining Problems

Asking questions and defining problems in 3–5 builds on grades K–2 experiences and progresses to specifying qualitative relationships.

- Define a simple design problem that can be solved through the development of an object, tool, process, or system and includes several criteria for success and constraints on materials, time, or cost. (4-ETS1-1)

Planning and Carrying Out Investigations

Planning and carrying out investigations to answer questions or test solutions to problems in 3–5 builds on K–2 experiences and progresses to include investigations that control variables and provide evidence to support explanations or design solutions.

- Plan and conduct an investigation collaboratively to produce data to serve as the basis for evidence, using fair tests in which variables are controlled and the number of trials considered. (4-ETS1-3)

Constructing Explanations and Designing Solutions

Constructing explanations and designing solutions in 3–5 builds on K–2 experiences and progresses to the use of evidence in constructing explanations that specify variables that describe and predict phenomena and in designing multiple solutions to design problems.

- Generate and compare multiple solutions to a problem based on how well they meet the criteria and constraints of the design problem. (4-ETS1-2)

Disciplinary Core Ideas

ETS1.A: Defining and Delimiting Engineering Problems

- Possible solutions to a problem are limited by available materials and resources (constraints). The success of a designed solution is determined by considering the desired features of a solution (criteria). Different proposals for solutions can be compared on the basis of how well each one meets the specified criteria for success or how well each takes the constraints into account. (4-ETS1-1)

ETS1.B: Developing Possible Solutions

- Research on a problem should be carried out before beginning to design a solution. Testing a solution involves investigating how well it performs under a range of likely conditions. (4-ETS1-2)

- At whatever stage, communicating with peers about proposed solutions is an important part of the design process, and shared ideas can lead to improved designs. (4-ETS1-2)

- Tests are often designed to identify failure points or difficulties, which suggest the elements of the design that need to be improved. (4-ETS1-3)

ETS1.C: Optimizing the Design Solution

- Different solutions need to be tested in order to determine which of them best solves the problem, given the criteria and the constraints. (4-ETS1-3)

Crosscutting Concepts

Influence of Science, Engineering, and Technology on Society and the Natural World

- People's needs and wants change over time, as do their demands for new and improved technologies. (4-ETS1-1)

- Engineers improve existing technologies or develop new ones to increase their benefits, decrease known risks, and meet societal demands. (4-ETS1-2)

Connections to 3-5-ETS1.A: Defining and Delimiting Engineering Problems include: Fourth Grade: (4-PS3-4)

Connections to 3-5-ETS1.B: Designing Solutions to Engineering Problems include: Fourth Grade: (4-ESS3-2)

Connections to 3-5-ETS1.C: Optimizing the Design Solution include: Fourth Grade: (4-PS4-3)
Connections to other DCIs across grade levels:
- **K-2.ETS1.A** (4-ETS1-1, 4-ETS1-2, 4-ETS1-3); **K-2.ETS1.B** (4-ETS1-2);
- **K-2.ETS1.C** (4-ETS1-2, 4-ETS1-3); **6-8.ETS1.A** (4-ETS1-1); **6-8.ETS1.B** (4-ETS1-1, 4-ETS1-2, 4-ETS1-3);
- **6-8.ETS1.C** (4-ETS1-2, 4-ETS1-3)

Common Core State Standards Connections:

ELA/Literacy –

- **RI.4.1** Refer to details and examples in a text when explaining what the text says explicitly and when drawing inferences from the text. (3-ETS1-2)
- **RI.4.7** Interpret information presented visually, orally, or quantitatively (e.g., in charts, graphs, diagrams, time lines, animations, or interactive elements on Web pages) and explain how the information contributes to an understanding of the text in which it appears. (4-ETS1-2)
- **RI.4.9** Integrate information from two texts on the same topic in order to write or speak about the subject knowledgeably. (4-ETS1-2)

- **W.4.7** Conduct short research projects that build knowledge through investigation of different aspects of a topic. (4-ETS1-1, 4-ETS1-3)
- **W.4.8** Recall relevant information from experiences or gather relevant information from print and digital sources; take notes and categorize information, and provide a list of sources. (4-ETS1-1, 4-ETS1-3)
- **W.4.9** Draw evidence from literary or informational texts to support analysis, reflection, and research. (4-ETS1-1, 4-ETS1-3)

Mathematics –

- **MP.2** Reason abstractly and quantitatively. (4-ETS1-1, 4-ETS1-2, 4-ETS1-3)
- **MP.4** Model with mathematics. (4-ETS1-1, 4-ETS1-2, 4-ETS1-3)
- **MP.5** Use appropriate tools strategically. (4-ETS1-1, 4-ETS1-2, 4-ETS1-3)
- **3-5.OA** Operations and Algebraic Thinking (4-ETS1-1, 4-ETS1-2)
The following educators contributed to the development of this document:

Becky Adams – Hamburg School District	Chris Lynch – Black River Technical College
Leslie Brodie – Fort Smith School District	Laura Mewborn – Pulaski County Special School District
Stephen Brodie – UA Fort Smith STEM Center	Melissa Miller – Farmington School District
Cindy Cardwell – Bentonville School District	Reggie Nalls – Dollarway School District
Pam Carpenter – Bald Knob School District	Yolanda Prim - Dollarway School District
Debbie Daily – University of Central Arkansas	Kathy Prophet – Springdale School District
Rosa Dumond – Arkadelphia School District	Virginia Rhame – Northwest Arkansas Education Cooperative
Tami Eggensperger – Cabot School District	Brian Schuller – DeQueen Mena Education Cooperative
Linda Flynn – Farmington School District	Mary Smith – Nettleton School District
A. Wade Geery – Norfork School District	Pam Vaughan – Camden School District
Kyla Gentry – Searcy School District	Deborah Walker – Magnolia School District
Josh Jenkins – Springdale School District	Greg Wertenberger – Henderson University STEM Center
Marilyn Johnson – Little Rock School District	Rebecca Wilburn – Fayetteville School District
Christina Johnson – North Little Rock School District	Andrew Williams – University of Arkansas at Monticello
Tifanie King – West Memphis School District	Shawna Williams – Farmington School District
Sandra Leiterman – Little Rock School District	Cathy Wissehr – University of Arkansas at Fayetteville
Steven Long – Rogers School District	